Ammonia and phosphorous precipitation through struvite crystallization from swine wastewater with high suspended solid

Ling Ma^a, Shoujun Yuan^{a,*}, Feng Ji^b, Wei Wang^{a,c}, Zhen-Hu Hu^{a,c,*}

^aSchool of Civil Engineering, Hefei University of Technology, Hefei 230009, China, email: 2522474088@qq.com (L. Ma), Tel. +86 551 62904148, Fax +86 551 6290266, email: sjyuan@hfut.edu.cn (S.-J. Yuan), dwhit@126.com (W. Wang), Tel. +86 551 62904144, Fax +86 551 6290266, email: zhhu@hfut.edu.cn (Z.-H. Hu) ^bInstitute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100081,

China, Tel. +86 010 51503301, email: fengjp3@hotmail.com (F. Ji)

^cInstitute of Water Treatment and Wastes Reutilization, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China

Received 22 December 2017; Accepted 3 June 2018

ABSTRACT

Anaerobic effluent of swine wastewater contains high concentration of suspended solid (SS), phosphate (PO₄-P), ammonia nitrogen (NH₄⁺-N), and heavy metals such as copper (Cu) and zinc (Zn), posing eutrophication and environmental risk if it was discharged into water body. Struvite crystallization is a promising way to simultaneously recover NH₄⁺-N and PO₄-P from wastewater. However, the information is very limited for recovering NH₄⁺-N and PO₄-P through struvite from wastewater containing high SS and heavy metals. In this study, the precipitation of NH_4^+ -N and PO₄-P through struvite process from real swine wastewater was investigated. The results showed that the amount of formed struvite precipitate of NH, +-N and PO, -P from swine wastewater increased as pH increased from 7.5 to 10.0. The recovery of $N^{\dagger}H_4^+$ -N and $P^{\dagger}O_4$ -P reached the maximum of 71% and 85%, respectively, at pH 9.5. The contents of Cu and Zn in the struvite precipitates were up to 130 mg kg $^{-1}$ and 400 mg kg⁻¹, respectively. When polymeric aluminum (PAC) and polyferric sulfate (PFS) were separately added as coagulants, 23.9%-40.0% and 17.3%-32.4% of SS were correspondingly removed. In the following struvite crystallization process, 79% of NH4+-N and 100% of PO4-P were precipitated. The contents of Cu and Zn in struvite precipitates declined to 53 mg kg⁻¹ and 152 mg kg⁻¹, correspondingly. Combined flocculation and struvite crystallization process can effectively remove SS from the liquid, increase the recovery of NH,⁺-N, and decrease content of Cu and Zn in struvite precipitate, reducing the environmental risk of struvite as fertilizer.

Keywords: Swine wastewater; Flocculation; Struvite; Heavy metals; Nutrient recovery

*Corresponding author.

1944-3994 / 1944-3986 © 2018 Desalination Publications. All rights reserved.