

118 (2018) 258–267 June

FeNi₃@SiO₂ magnetic nanocomposite as a highly efficient Fenton-like catalyst for humic acid adsorption and degradation in neutral environments

M. Khodadadi^{a,b}, M.H. Ehrampoush^c, A. Allahresani^d, M.T. Ghaneian^c, M.H. Lotfi^e, A.H. Mahvi^{f,g,*}

^aDepartment of Environmental Health Engineering, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, email: maryam.khodadadi@gmail.com

^bSocial Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran

^eEnvironmental Sciences and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, emails: ehrampoush@ssu.ac.ir (M.H. Ehrampoush), mtghaneian@yahoo.com (M.T. Ghaneian)

^dDepartment of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran, email: a_allahresani@birjand.ac.ir

^eDepartment of Biostatistics & Epidemiology, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, email: mhlotfi56359@gmail.com

^fCenter for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran, email: ahmahvi@yahoo.com

⁸Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Received 8 August 2017; Accepted 30 April 2018

ABSTRACT

In this research, the ability of Fenton-like catalytic process in the presence of H_2O_2 for degradation of humic acid in simulated water was studied. In this regard, FeNi₃ nanoparticles were synthesized by the coprecipitation method, using SiO₂. The properties of the prepared FeNi₃@SiO₂ were assessed using Fourier transform infrared spectroscopy, vibrating sample magnetometer, field-emission scanning electron microscopy and transmission electron microscopy. The studied parameters were pH (3, 5, 7, 9 and 11), contact time (5–180 min), nanocomposite dose (0.005–0.1 g/L), concentration of humic acid (2–15 mg/L) and concentration of H_2O_2 (50–200 mg/L). The highest removal percentage of humic acid was 100% at pH = 7, with humic acid concentration of 10 PPM, FeNi₃@SiO₂ dosage of 0.1 g/L and H_2O_2 dosage of 200 mg/L. According to the results, the Fenton-like catalytic process of FeNi₃@SiO₂/H₂O₂ had high efficiency in removing humic acid from aquatic environment.

Keywords: FeNi₃@SiO₂ magnetic nanoparticles; Humic acid; Catalyst; Fenton-like; Advanced oxidation process

* Corresponding author.

1944-3994/1944-3986 © 2018 Desalination Publications. All rights reserved.