

Synthesis of cobalt ferrite nanoparticles via chemical precipitation as an effective photocatalyst for photo Fenton-like degradation of methylene blue

Deniz Uzunoğlu*, Memduha Ergüt, Pınar Karacabey, Ayla Özer

Chemical Engineering Department, Mersin University, Çiftlikköy Campus, Mersin, Turkey, email: denizuzunoglu4@gmail.com (D. Uzunoğlu)

Received 17 May 2019; Accepted 22 September 2019

ABSTRACT

In this work, the synthesis and characterization of cobalt ferrite nanoparticles ($CoFe_2O_4$ NPs) were carried out. The characterization studies confirmed that the synthesized particles were determined to be magnetic $CoFe_2O_4$ NPs in nanoscale and cubic spinel structure. The Brunauer–Emmett–Teller specific surface area of mesoporous $CoFe_2O_4$ NPs was determined to be 145.03 m²/g. The photo Fenton-like degradation ability of $CoFe_2O_4$ NPs was also evaluated and the results demonstrated that the synergistic effect of combining of Co and Fe_2O_4 enabled $CoFe_2O_4$ NPs to become the promising photo Fenton-like catalyst for degradation of methylene blue (MB) from aqueous solutions. At the optimum experimental conditions (3.0 of initial pH, 25 mM of H_2O_2 concentration, 50 mg/L of initial dye concentration, and 0.25 g/L of catalyst concentration), 18.29% chemical oxygen demand removal and 99.75% color removal were achieved after the photo Fenton-like degradation of MB in the presence of $CoFe_2O_4$ NPs heterogeneous catalyst with near-UV radiation.

Keywords: Cobalt ferrite nanoparticles; Fenton-like; Heterogeneous catalyst; Methylene blue; Photo degradation

* Corresponding author.

Presented at the 4th International Conference on Recycling and Reuse 2018 (R&R2018), 24–26 October 2018, Istanbul, Turkey 1944-3994/1944-3986 © 2019 Desalination Publications. All rights reserved.