Preparation of activated carbon from sludge by 'double green activation' and adsorption capacity for Congo red dye

Jun Chen^{a,b,c,*}, Xiaowan Dong^{a,b}, Sisi Cao^{a,b}, Layun Zhu^{a,b}, Zihui Song^{a,b}, Jie Jin^{a,d}, Hongxing Yang^b

^aSchool of Biology, Food and Environment, Hefei University, Hefei 230601, China, Tel. +86 551 62158405; Fax: +86 551 62158406; emails: chenjun@hfuu.edu.cn (J. Chen), 1823641450@qq.com (X. Dong), 1241715398@qq.com (S. Cao), 2966705708@qq.com (L. Zhu), 2966705708@qq.com (Z. Song), Tel. +86 551 62158409; Fax: +86 551 62158406; email: 2378859912@qq.com (J. Jin) ^bAnhui Key Laboratory of Sewage Purification and Eco-restoration Materials, Hefei 230088, China, Tel. +86 551 65326105; Fax: +86 551 62158406; email: 331279963@qq.com (H. Yang) ^cAnhui Guoke Testing Technology Co., Ltd., Hefei 230041, China

Received 21 August 2021; Accepted 3 January 2022

ABSTRACT

The sludge was transformed into activated carbon (SAC) by the green activation method. Citric acid ($C_6H_8O_7$) and potassium ferrate (K_2FeO_4) were used as different activators, and four kinds of SAC (SAC_{N'}; SAC_{CA}; SAC_{PF}; SAC_{CA-PF}) were prepared by different activator combinations. The SAC_{CA-PF} was produced with $C_6H_8O_7$ and K_2FeO_4 by the 'double green activation' method, it had the highest specific surface area (136 m² g⁻¹) and abundant functional groups (C=O, Si–C) attached to it. The adsorption capacity of SAC_{CA-PF} for Congo red (CR) was 98.61 mg g⁻¹, faster and more efficient than the other SAC. The adsorption process was well described by the Langmuir model and quasi-second-order kinetic model. The adsorption mechanism of SAC_{CA-PF} (available on the CR surface) was attributed to various interactions, such as hydrogen bonding and electrostatic attraction. Moreover, SAC_{CA-PF} could be regenerated by Fenton reaction, and the removal rate was still more than 80% after five cycles of used. The results indicated that the impregnation of $C_6H_8O_7$ and K_2FeO_4 can effectively improve the adsorption efficiency of SAC, prepared by the 'double green activation' method. This method can be applied for carbonized sludge and dye wastewater treatment in an environment-friendly way.

Keywords: SAC; Double green activation; Adsorption performance

* Corresponding author.

1944-3994/1944-3986 © 2022 Desalination Publications. All rights reserved.