Effective photocatalytic degradation of dye pollution in synthetic wastewater using nanocomposites of chromium and potassium oxides

D. Hamad^a, Sameh S. Ahmed^{b,c}, M.I. Sayyed^d, M. Rashad^{a,e,*}

^aPhysics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt, email: m.rashad@aun.edu.eg (M. Rashad) ^bMining and Metallurgical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71516, Egypt ^cCivil and Environmental Engineering Department, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia

^dDepartment of Physics, Faculty of Science, Isra University, Amman, Jordan

^ePhysics Department and Nanotechnology Research Units, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia

ABSTRACT

In the present work, chromium(III) oxide (Cr_2O_3) and potassium oxide (K_2O) nanoparticles (NPs) were synthesized using the combustion method. Mixed oxides of varying concentrations in the form of $(1-x)Cr_2O_3/xK_2O$ (x = 0.1, 0.3, 0.5, and 0.7) were prepared. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and optical measurements were used to investigate the properties of NPs. XRD indicates that the grain size of the mixed oxides decreased as the K₂O content increased. Additionally, HRTEM revealed several types of shapes, such as hexagonally shaped NPs. The optical measurements showed a blue shift, indicating that the band structure was slightly modified during the Cr_2O_3/xK_2O mixing. The optical band gap obeys the direct allowed transition and varies from 2.29 to 2.59 eV as the K₂O ratio in the composites increases from x = 0.1 to 0.7. The $(1-x)Cr_2O_3/xK_2O$ NPs were used as catalysts in wastewater during a photocatalytic process. Orange G was chosen as an impurity in the water. The absorbance curves of Orange G in the water were measured at different times in the presence of the same quantity of Cr_2O_3/xK_2O NPs with x = 0.1 and 0.7, respectively. Furthermore, the experimental results were analyzed by pseudo-first-order model. A first-order kinetic model had the best fit for the $(1-x)Cr_2O_3/xK_2O$ NPs. The strongest relationship occurred with a composition of $0.1Cr_2O_3/0.7K_2O$. The formed composites could be used to degrade organic dyes for water purification.

Keywords: Cr₂O₃; K₂O; High-resolution transmission electron microscopy; Photocatalysis; Optical properties; Dye pollution

* Corresponding author.

1944-3994/1944-3986 © 2022 Desalination Publications. All rights reserved.