

In-situ growth of manganese oxide/bamboo powder nanocomposites with excellent activity in methylene blue removal

Guanhui Wang^a, Wenxiang Li^a, Hanli Wang^b, Congcong Bi^b, Runlin Han^{a,b,*}

^aSchool of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, China, emails: hanrunlin@163.com (R. Han), wangguanhui@jgsu.edu.cn (G. Wang), 2383639321@qq.com (W. Li) ^bShandong Huaxia Shenzhou New Material Co., Ltd., Zibo 256400, China, emails: whl89333@huaxiashenzhou.com (H. Wang), szzscq@huaxiashenzhou.com (C. Bi)

Received 16 March 2023; Accepted 30 June 2023

ABSTRACT

Cellulose is rich in sources and contains a large number of hydroxyl groups in the molecule, which can be used as the carrier of nanomaterials and reducing agents of $KMnO_4$. Manganese oxide $(MnO_2)/bamboo$ powder nanocomposites were prepared at 60°C using wood powder as a reducing agent and nanomaterials carrier. $KMnO_4$ was utilized as an oxidant and manganese source of MnO_2 nanoparticles. Methylene blue was used as the target pollutant to test the activity of nanocomposites. Under neutral conditions, the removal efficiency of methylene blue reached 98.5% under room temperature and atmospheric pressure, and the maximum adsorption capacity of the nanocomposite reached in 10 min.

Keywords: Wood powder; Manganese oxide; Composite material; Methylene blue; Wastewater treatment

* Corresponding author.