

Desalination and Water Treatment

www.deswater.com

1944-3994/1944-3986 © 2012 Desalination Publications. All rights reserved doi: 10.1080/19443994.2012.664695

41 (2012) 105–113 March

Production of L-lysine from L-lysine monohydrochloride by bipolar membrane electrodialysis

Yaping Zhang^{a,*}, Yan Chen^{a,b}, Mingzhu Yue^a, Lei Wang^a

^aEngineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, P.R. China ^bSichuan Anxian Yinhe Constructional & Chemical Group Co., Ltd, Mianyang, 622656, P.R. China Tel./Fax: +86 816 6089372; email: zhangyaping@swust.edu.cn

Received 17 May 2011; Accepted 30 January 2012

ABSTRACT

Bipolar membrane electrodialysis consisting of one bipolar membrane, one anion-exchange membrane and one cation-exchange membrane was performed to achieve the production of L-lysine from L-lysine (L-Lys) monohydrochloride. Several experimental parameters including the operation voltage, the initial L-Lys·HCl concentration and operation temperature were compared and discussed. The Cl⁻ removal ratio, the electric conductivity, the pH in various compartments, the current efficiency (CE) and the energy consumption (EC) were presented and analyzed respectively. When the initial concentration of L-Lys·HCl is 0.6 mol/L and the constant voltage is 40 V, the removal ratio of Cl⁻ reached 86.6%, the CE 24% and the EC 28.2 kW h/kg. Elevating the operation temperature can promote the electrodialysis process slightly.

Keywords: Bipolar membrane; Electrodialysis; L-Lysine; L-Lysine monohydrochloride

^{*}Corresponding author.