

51 (2013) 606–608 January

Gas separation process: analysis of composite membranes based on alumina/PVDF at lower power consumption energy

Dionísio da Silva Biron^a, Camila Cherubini^b, Venina dos Santos^a, Lucas Gomes^a, Andréa Schneider^b, Mara Zeni^{a,*}

^aUniversity of Caxias do Sul, UCS, Caxias do Sul, Brazil Email: mzandrad@ucs.br ^bUniversity of Região de Joinville, UNIVILLE, Joinville, Brazil

Received 29 February 2012; Accepted 15 June 2012

ABSTRACT

Human activity have been emitting greenhouse gases into the atmosphere for a long time. To separate these gases, especially CO_2 and CH_4 , polymeric membranes have been used in the chemical industry as this technology has a lower power consumption when compared to other separation processes. In this work, α -alumina ceramic tubes (support) were internally impregnated with poly(fluoride vinylidene) (PVDF), and the permeability and selectivity of the membrane to CO_2 , CH_4 , and O_2 was studied. All membranes (MT1 and MT2), when tested at low pressures, presented higher selectivity to CH_4 gas, and with increasing pressure the selectivity for CO_2 increased as well. The MT2 membrane was more efficient in the separation of CO_2/CH_4 gases, which is an important result because both of them are the most impacting gases to the greenhouse effect and the most difficult to separate using membrane process.

Keywords: Composite membranes; Alumina/PVDF; Gás separation; GHG

^{*}Corresponding author.

Presented at the International Conference on Desalination for the Environment, Clean Water and Energy, European Desalination Society, 23–26 April 2012, Barcelona, Spain