Removal of $\mathrm{Cr}(\mathrm{VI})$ from aqueous solution using brick kiln chimney waste as adsorbent

Sajjad Hussain ${ }^{\text {a,* }}$, Saima Gul ${ }^{\text {a }}$, Sabir Khan ${ }^{\text {b }}$, Habib-ur Rehman ${ }^{\text {c }}$, Mohammad Ishaq ${ }^{\text {c }}$, Adnan Khan ${ }^{\text {c }}$, Fazal Akbar Jan ${ }^{\text {c }}$, Zia Ud Din ${ }^{\text {d }}$
${ }^{a}$ Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP, São Carlos 13560 970, SP, Brazil Tel. +55 16 33739709; email: sajjad@iqsc.usp.br
${ }^{b}$ Instituto de Química, Universidade Estadual de Campinas, CP 6154, CEP, Campinas 13083 970, SP, Brazil
${ }^{c}$ Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
${ }^{d}$ Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil

Received 20 April 2013; Accepted 18 August 2013

Abstract

Heavy metals are toxic to aquatic flora and fauna even in relatively low concentrations. Chromium is a commonly occurring toxic metal in ecosystems. This study aims the adsorption of $\mathrm{Cr}(\mathrm{VI})$ on a novel low-cost carbonaceous material under different experimental conditions such as contact time, initial concentration of metal ions, pH , and temperature. The adsorbent was characterized by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The equilibrium data were fitted well with Langmuir and Freundlich isotherms. Adsorption kinetics of $\mathrm{Cr}(\mathrm{VI})$ ions onto chimney waste adsorbent were analyzed by pseudo-first-order and pseudo-second-order models. The adsorption process is favored by acidic pH and followed the second-order kinetics. Various thermodynamic parameters like activation energy (E_{a}), Gibbs free energy change $\left(\Delta G^{\circ}\right)$, enthalpy change (ΔH^{0}), and entropy change (ΔS°) were calculated. The results showed that the carbonaceous material obtains from bricks kiln chimneys can be efficiently used for $\mathrm{Cr}(\mathrm{VI})$ removal from wastewater.

Keywords: Adsorption; Chromium; Heavy metals; Langmuir; Kinetics

[^0]
[^0]: *Corresponding author.

