Desalination and Water Treatment

doi: 10.1080/19443994.2014.965224

Toxic effect of H_2O_2 in H_2O_2/UV , photo-Fenton and heterogeneous photocatalysis (TiO₂/H₂O₂/UV) systems to treat textile wastewater

C. Lopez-Lopez^{a,b}, J. Purswani^b, J. Martín-Pascual^{a,b}, M.V. Martínez-Toledo^b, M.M. Muñío^c, J.M. Poyatos^{a,b,*}

^aDepartment of Civil Engineering, University of Granada, 18071 Granada, Spain, Tel. +34 958 240052; Fax: +34 958 246138; emails: cll@ugr.es (C. Lopez-Lopez), jmpascual@ugr.es (J. Martín-Pascual), Tel. +34 958 246154; Fax: +34 958 246138; email: jpoyatos@ugr.es (J.M. Poyatos)

^bInstitute of Water Research, University of Granada, 18071 Granada, Spain, Tel. +34 958 249520; Fax: +34 958 242981; emails: purswani@ugr.es (J. Purswani), momt@ugr.es (M.V. Martínez-Toledo)

^cDepartment of Chemical Engineering, University of Granada, 18071 Granada, Spain, Tel. +34 958 240532; Fax: +34 958 248992; email: mmunio@ugr.es (M.M. Muñío)

Received 1 April 2014; Accepted 7 September 2014

ABSTRACT

The application of H_2O_2/UV , photo-Fenton and heterogeneous photocatalysis (TiO₂/H₂O₂/ UV) processes for the treatment of a highly polluted coloured wastewater was analysed. The experiments were carried out with different H_2O_2 concentrations (0.25, 0.5, 1, 2 and 5 g/L). The toxic properties of different H₂O₂ concentrations in textile wastewater were tested by the use of a Microtox bioassay with Vibrio fischeri. The efficiency of the process was checked by assessing the physicochemical parameters, total organic carbon (TOC) and colour. The use of TiO₂ as a catalyst with UV photolysis was the most effective method to remove toxins, organic material and colour using the five concentrations of H_2O_2 tested. By using 5 g/L of H_2O_2 , 94% TOC removal was achieved. In relation to colour removal, this was greater than 99% with 5 g/L of H_2O_2 in all three processes. The use of a catalyst allowed us to reduce the hydraulic retention time of the process to 30 min with Fe^{2+} and 45 min with TiO₂. Controlling the amount of H_2O_2 used as the oxidant in an advanced oxidation process (AOP) is important since it was found to increase the toxicity of the influent with the addition of H_2O_2 by $4.99 \pm 1.48\%$, $27.4 \pm 3.24\%$, $39.16 \pm 5.64\%$, $53.40 \pm 4.15\%$ and $59.39 \pm 4.67\%$ with 0.25, 0.5, 1, 2 and 5 g/L H₂O₂, respectively. Therefore, under the studied conditions, an H₂O₂ concentration greater than 1 g/L is not recommended for an AOP in order to avoid an excess of H₂O₂ in the effluent.

Keywords: AOP; Catalyst; Toxicity; Colouring

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.