

57 (2016) 7079–7084 March

Taylor & Francis Taylor & Francis Group

Morphologically controlled synthesis of porous Mn₂O₃ microspheres and their catalytic applications on the degradation of methylene blue

Ping Tao, Mihua Shao, Chengwen Song*, Chen Li, Yanyan Yin, Shuaihua Wu, Murong Cheng, Zhi Cui

School of Environment Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China, Tel./Fax +86 411 84724342; emails: taopingdlmu@163.com (P. Tao), mihuashao@126.com (M. Shao), chengwensong@dlmu.edu.cn (C. Song), li_chen100@163.com (C. Li), yanyanyin@yeah.net (Y. Yin), shuaihuawu@yeah.net (S. Wu), murongcheng@yeah.net (M. Cheng), zhicui1988@126.com (Z. Cui)

Received 9 May 2014; Accepted 26 January 2015

ABSTRACT

Porous Mn_2O_3 microspheres are controllably synthesized by selectively etching $MnCO_3$ precursor with HCl solution. Morphologies and microstructures of Mn_2O_3 microspheres are analyzed by SEM, TEM, XRD, and N_2 sorption technique. The catalytic performances of Mn_2O_3 microspheres for the degradation of methylene blue (MB) are investigated, and the reaction kinetics of MB degradation is also studied. The results show it is feasible to control the morphologies of Mn_2O_3 microspheres by adjusting the concentration of HCl solution, and the well-developed porous Mn_2O_3 microspheres demonstrate good potential on MB degradation. The degradation reactions follow the pseudo-first-order kinetic model, and the degradation capabilities for MB are great dependent on BET surface areas and pore volumes of Mn_2O_3 microspheres.

Keywords: Porous; Mn₂O₃; Nanostructures; Degradation

*Corresponding author.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.