

57 (2016) 11275–11282 May

Ammonium reduction kinetics in drinking water by newly isolated *Acinetobacter* sp. HITLi 7 at low temperatures

Wen Qin^a, Weiguang Li^{a,b,*}, Duoying Zhang^{a,*}, Xiaofei Huang^a, Yang Song^a

^aSchool of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin, China, email: qinwenhit@163.com (W. Qin), Tel. +86 0451 86283003; email: hitlwg@126.com (W. Li), Tel. +86 13836031713; emails: duo0314@163.com (D. Zhang), hxf7777@126.com (X. Huang), songyang0725102@126.com (Y. Song) ^bState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China

Received 22 July 2014; Accepted 18 April 2015

ABSTRACT

The *Acinetobacter* sp. HITLi 7 was isolated from the Songhua River and shown to be capable of heterotrophic nitrification ability at 2°C. To predict the ammonium reduction performance in drinking water at low temperature, the kinetics of strain HITLi 7 were investigated using Monod kinetic models. The results of calculations showed that the substrate half saturation constant K_s was 9.9 mg/L of total ammonium, and the maximum specific rate μ_{max} was 7.9 × 10⁻⁴ h⁻¹ at 8°C, C/N 2, pH 6.0 while shaking at 100 r/min. The effects of temperature (2, 5 and 8°C), C/N (2, 4, and 10), and pH (6.0, 7.0, and 7.5) on kinetic parameters were also evaluated. K_s and μ_{max} increased consistently with an increase in temperature and decreased as C/N ratio increased. The specific affinity a^0 ($a^0 = \mu_{max}/K_s$) for ammonium was the highest for a C/N of 10. This value was 2.1-fold higher than the affinity observed for a C/N of 2. The results demonstrated that the affinity of HITLi 7 for ammonium was higher when a sufficient carbon source was present. The maximum ammonium reduction rate was 0.18 mg NH₄⁺-N/L/h at a C/N of 10. These results suggest that HITLi 7 may be used for ammonium removal in drinking water at low temperatures.

Keywords: Heterotrophic nitrification bacterium; Kinetics; Low temperature; Drinking water

*Corresponding authors.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.