

57 (2016) 14178–14187 June

TiO₂-nanostructured carbon composite sorbent/photocatalyst for humic acid removal from water

Corina Orha^a, Florica Manea^{b,*}, Aniela Pop^b, Cornelia Bandas^a, Carmen Lazau^a

^aCondensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, P. Andronescu no. 1, 300254 Timisoara, Romania, emails: haiduccorina@yahoo.com (C. Orha), cornelia.bandas@gmail.com (C. Bandas), carmen.lazau@gmail.com (C. Lazau)

^bDepartment of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, V. Parvan Bd., no. 6, Timisoara 300223, Romania, Tel. +40 256/403071; Fax: +40 256/403069;

emails: florica.manea@upt.ro (F. Manea); email: aniela.pop@upt.ro (A. Pop)

Received 3 March 2015; Accepted 9 June 2015

ABSTRACT

In this study, two types of nanostructured carbon-TiO₂ within epoxy matrix, i.e. carbon nanotubes-TiO₂-Epoxy (CNT-TiO₂-Epoxy) and carbon nanofiber-TiO₂-Epoxy (CNF-TiO₂-Epoxy) have been prepared, characterized and tested as sorbent and photocatalysts for humic acids (HAs) removal from water envisaging advanced drinking water treatment. The HA adsorption capacities of CNT-TiO₂-Epoxy of 8.68 mg g^{-1} and CNF-TiO₂-Epoxy of 7.14 mg g^{-1} were determined using Freundlich isotherm and pseudo-second-order kinetics model. Also, the photocatalytic activities of both composites were assessed in terms of HA degradation efficiency and rate constant and an enhancement effect was found for CNT-TiO₂-Epoxy composite for HA removal. CNF-TiO₂-Epoxy photocatalytic performance was worse vs. simple TiO₂ traditional catalyst in terms of degradation efficiency, but five times faster from the kinetics point of view. The lifetime and the regeneration pathway by the photocatalysis were assessed for CNT-TiO₂-Epoxy composite system in comparison with the sorption applications. A HA removal efficiency of 43.8% was found by photocatalysis vs. 30.2% reached by the sorption after successive five running. A regeneration degree of about 25% was achieved under the similar conditions of photocatalysis without HA presence.

Keywords: Carbon materials; Titanium dioxide; Humic acid; Sorption; Photocatalysis

*Corresponding author.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.