

57 (2016) 3125–3131 February

A novel preparation approach and denitrification performance of TiO_2/Fe^0 photocatalysts

Yuan Liu, Jianchao Lee*, Yinghua Zhao, Meijuan Zhang, Liping Wang, Qiannan Duan

Department of Environment Science, Shaanxi Normal University, Xían 710062, China, Tel. +86 18392437664; emails: liuyuanaishangyang@163.com (Y. Liu), jianchaolee@snnu.edu.cn (J. Lee)

Received 3 April 2014; Accepted 25 October 2014

ABSTRACT

Chemical vapor hydrolysis deposition (CVHD), a novel method for preparation of TiO_2/Fe^0 is presented. In the method, tetrabutyl titanate (TBT) and sponge iron (Fe_s) are used as precursor and carrier, respectively. Especially, TBT was hydrolyzed slowly with the thin water vapor to create TiO_2 nanoparticles on the Fe_s carrier. The experiment showed that the optimal preparation conditions for TiO_2/Fe^0 via CVHD were calcination temperature of 723 K and TiO_2 -loading amount of 7.57%. The as-prepared TiO_2/Fe^0 catalysts were evaluated by the catalytic reaction of nitrate reduction, and exhibited a higher catalytic activity and selectivity than the similar catalysts prepared with the typical methods of sol–gel or alkoxide hydrolysis precipitation. The present results demonstrate that the selective nitrate reduction over TiO_2/Fe^0 catalysts with HCOOH as the hole scavenger, highlighting the validity of removal of aqueous nitrate by photocatalysis.

Keywords: Chemical vapor hydrolysis deposition (CVHD); Nitrate; Photocatalysis; TiO₂/Fe⁰

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.