

Adsorption of zinc (II) onto MnO₂/CS composite: equilibrium and kinetic studies

Dinh Van-Phuc^{a,*}, Le Ngoc-Chung^b, Nguyen Van-Dong^c, Nguyen Ngoc-Tuan^d

^aDong Nai University, 04 Le Quy Don Street, Tan Hiep Ward, Bien Hoa City, Dong Nai Province, Vietnam, email: dinhvanphuc82@gmail.com ^bDalat University, 01 Phu Dong ThienVuongstreet, Dalat City, Lam Dong Province, Vietnam, email: chungln@dlu.edu.vn

^cVNUHCM-University of Science, 227 Nguyen Van Cu Street, District 5, Hochiminh City, Vietnam. ^dNuclear Research Institute, Dalat, Lam Dong, Vietnam

Received 23 December 2015; Accepted 9 May 2016

ABSTRACT

In this work, manganese dioxide/chitosan (MnO₂/CS) was used to remove Zn(II) from an aqueous sample over a concentration range of 30–100 mg/L, adsorption time of 15–180 min, and pH of 2–5. The maximum sorption (>80%) was achieved at pH 4 after 80 min with an initial concentration of 50 mg/l and 0.1 g of MnO₂/CS. The experiment data were analyzed using the non-linear Freundlich, Langmuir, Redlich–Peterson, Sips, Temkin and Dubinin–Radushkevich (D–R) isotherm models. Langmuir isotherm offers maximum sorption capacity (q_m) of 24.21 mg/g (RMSE = 1.575 and χ = 0.8034), while the Temkin and Dubinin–Radushkevich (D–R) isotherm followed a physical process. Furthermore, kinetic studies showed that the adsorption processes partially followed the pseudo-second-order equation. In addition, intra-particle diffusion model was used to ascertain the sorption process mechanism. MnO₂/CS has also been used to remove Zn(II) from the wastewater produced by the galvanized iron manufacturing industry.

Keywords: MnO,/chitosan composite; Adsorption; Zinc; Equilibrium; Kinetic; Galvanized iron

* Corresponding author.

Presented at the 2015 International Environmental Engineering Conference (IEEC 2015) October 28–30, 2015, Busan, Korea. 1944-3994/1944-3986 © 2017 Desalination Publications. All rights reserved.