

Activated carbon from avocado seeds for the removal of phenolic compounds from aqueous solutions

Anderson J.B. Leite^a, Carmalin Sophia A.^b, Pascal S. Thue^a, Glaydson S. dos Reis^a, Silvio L.P. Dias^a, Eder C. Lima^{a,*}, Julio C.P. Vaghetti^a, Flavio A. Pavan^c, Wagner Soares de Alencar^{a,d}

^aInstitute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil, Tel./Fax +55 (51) 3308 7175; emails: profederlima@gmail.com, eder.lima@ufrgs.br (E.C. Lima), barcellos2903@gmail.com (A.J.B. Leite), pascalsilasthue@gmail.com (P.S. Thue), glaydsonambiental@gmail.com (G.S. dos Reis), silvio.dias@ufrgs.br (S.L.P. Dias), juliovaghetti@gmail.com (J.C.P. Vaghetti), drwsa@yahoo.com.br (W.S. de Alencar) ^bNational Environmental Engineering Research Institute (NEERI), Chennai Zonal Laboratory, CSIR Campus, Taramani, Chennai 600113, India, email: ac_sophia@neeri.res.in

^eFederal University of Pampa, UNIPAMPA, Bagé, RS, Brazil, email: flavio.pavan@unipampa.edu.br (F.A. Pavan) ^dInstitute of Exact Sciences, Federal University of South and Southeast of Pará (UNIFESSPA), Marabá, PA, Brazil

Received 11 July 2016; Accepted 27 January 2017

ABSTRACT

Avocado seed activated carbon (ASAC) was synthesized by microwave-heating process using $ZnCl_2$ as an activating agent. The adsorbent ASAC was characterized using analytical techniques namely N_2 isotherms, Fourier transform infrared spectroscopy, and scanning electron microscopy. The surface area of ASAC was 1,432 m² g⁻¹. The ASAC prepared was used for adsorption of resorcinol and 3-aminophenol from aqueous solutions. Kinetic models namely pseudo-first order, pseudo-second order, and Avrami fractional order and isotherms (Freundlich, Langmuir, and Liu) were applied to the experimental adsorption data. The results demonstrate maximum adsorption capacity for resorcinol (406.9 mg g⁻¹) and 3-aminophenol (454.5 mg g⁻¹) at 50°C. The thermodynamic analysis of data and the effect of temperature studies revealed that the adsorption processes of resorcinol and 3-aminophenol onto ASAC were temperature dependent. The adsorption processes were exothermic and spontaneous. The avocado carbon displayed excellent adsorption properties for the simulated effluents containing phenolic compounds.

Keywords: Avocado seed; Microwave-assisted pyrolysis; Activated carbons; Phenolic compounds; Isotherm and kinetic models; Adsorption

* Corresponding author.

1944-3994/1944-3986 \odot 2017 Desalination Publications. All rights reserved.