Performance and evaluation of aerobic granular sludge in oily wastewater treatment

S. Wang^{a,b}, Q.Q. Yang^a, W.X. Shi^c, S.L. Yu^c, J.Z. Lv^{a,b}, J. Li^{a,b,*}

^aJiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China, email: shuowang@jiangnan.edu.cn (S. Wang), haerbinqianer@163.com (Q.Q. Yang), ljz@jiangnan.edu.cn (J.Z. Lv), liji@jiangnan.edu.cn (J. Li)

^bJiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China, ^cState Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China, email: swx@hit.edu.cn (W.X. Shi), ysl@vip.163.com (S.L. Yu)

Received 25 October 2016; Accepted 11 March 2017

ABSTRACT

Oily wastewater treatment through membrane separation is remarkably effective, but the high operation cost and poor resource recovery potential of this method necessitate the application of an integrated physical/chemical-biological oily wastewater treatment. In this study, aerobic granular sludge was applied for oily wastewater treatment from the ultrafiltration (UF) effluent of a two-stage UF-reverse osmosis process. The removal efficiencies of the sludge for oil and chemical oxygen demand reached 94.1% and 85.6%, respectively. The protein concentration of extracellular polymeric substances (EPS) increased to 34.6 mg/g MLSS, and the relatively high protein/polysaccharide ratio was found to be closely related to the formation of aerobic granular sludge. In addition, protein in loosely bound-EPS was converted to tightly bound-EPS (TB-EPS), which indicated that the protein in TB-EPS could be the major factor affecting the granulation process. Separate sludge incineration could be achieved due to the lower heating value of granules was as high as 8.5 MJ/kg. Furthermore, the proposed process could enhance the treatment efficiency of the sludge incinerator and increase the amount of heat energy that could be recycled.

Keywords: Aerobic granular sludge; Tightly bound-extracellular polymeric substances; Oily wastewater treatment; Sludge treatment; Heating value

*Corresponding author.

1944-3994 / 1944-3986 © 2017 Desalination Publications. All rights reserved.