Desalination and Water Treatment www.deswater.com doi:10.5004/dwt.2017.20594

Application of nanofiltration for concentration of sodium sulfate waste solution

B. Cichy^{a,*}, H. Jaroszek^a, W. Mikołajczak^a, M. Nowak^a, B. Pisarska^a, P. Markowicz^b, T. Malinowski^b

^aNew Chemical Syntheses Institute, Inorganic Chemistry Division "IChN" in Gliwice, Sowinskiego 11, PL 44-101 Gliwice, Poland, email: barbara.cichy@ichn.gliwice.pl (B. Cichy), hanna.jaroszek@ichn.gliwice.pl (H. Jaroszek), wojciech.mikolajczak@ichn.gliwice.pl (W. Mikołajczak), mariusz.nowak@ichn.gliwice.pl (M. Nowak), bozenna.pisarska@ichn.gliwice.pl (B. Pisarska)

^bGrupa Azoty S.A., Kwiatkowskiego 8, PL 33-101 Tarnów, Poland, email: Pawel.Markowicz@grupaazoty.com (P. Markowicz), Tomasz.Malinowski@grupaazoty.com (T. Malinowski)

Received 31 August 2016; Accepted 14 February 2017

ABSTRACT

Nanofiltration was successfully applied to pre-concentrate waste sodium sulfate solution. Reducing salt discharge to the environment is important from both an economical and ecological point of view. Two commercial membranes: NF-270 (DOW FilmTec) and MPS-34 (KOCH) were characterized in flat-sheet and tested in spiral-wound configuration. In the pressure range of 10–40 bar, both permeation flux and salt retention were found to decrease significantly with increasing feed concentration and decreasing driving force. To maintain a high concentration of Na_2SO_4 (up to 110 g/l) and low salt content in permeate (below 0.3 g/l Na_2SO_4), a two-stage process was proposed and verified.

Keywords: Nanofiltration; Sodium sulfate; Wastewater treatment; Recovery

*Corresponding author.

Presented at the 3rd International Congress on Water, Waste and Energy Management, Rome, Italy, 18–20 July 2016

1944-3994 / 1944-3986 © 2017 Desalination Publications. All rights reserved.