Removal of nitrogen from simulated ground water by scoria: dynamic processes and modeling

Tianzi Dong^{a,b,c}, Yuling Zhang^{a,b,c,*}, Xiaosi Su^{b,c}, Rui Li^{a,b,c}

^aCollege of Environment and Resources, Jilin University, Changchun 130021, China ^bKey Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China ^cInstitute of Water Resources and Environment, Jilin University, Changchun 130021, China, Tel. +8613756160831, email: lingling29@126.com (Y. Zhang)

Received 27 March 2017; Accepted 23 July 2017

ABSTRACT

In this study, the dynamic processes of nitrogen removal from aqueous solutions were identified. The study used column experiments at different influent flow rates (40 mL/min, 60 mL/min and 80 mL/min) and different nitrogen concentrations (1 mg/L, 2 mg/L, and 5 mg/L for NH₄⁺-N and NO₂⁻-N; 30 mg/L, 50 mg/L, and 80 mg/L for NO₃⁻-N). The adsorption data for nitrogen fitted well with the Thomas and Yoon-Nelson models. At different filled heights (0.5 m, 0.75 m, and 1.0 m), the adsorption data fitted well with the Bed Depth Service Time model. The back-flush method can enable scoria to recover purification efficiency. After seven back flushes, the regeneration rate was better than 90%. Breakthrough curves from tank experiments yielded very similar results to the column experiments. The breakthrough time of NH₄⁺-N and NO₂⁻-N in the tank experiments were almost the same as in the column experiments. However, the breakthrough time of NO₃⁻-N was slightly shorter than in column experiments.

Keywords: Scoria; Nitrogen adsorption; Dynamic processes; Modeling; Back flush

*Corresponding author.

1944-3994 / 1944-3986 © 2017 Desalination Publications. All rights reserved.