

A simple method for the determination of adsorption kinetic parameters using circulating-type shallow bed reactor (CSBR)

Takashi Kawakita^a, Huan-Jung Fan^{b,*}, Yoshimi Seida^c, Tomohiro Kinoshita^d, Eiji Furuya^d

^aZenkosha Co. Ltd., Tokyo, Japan, email: takashi@zenko.co.jp

Tel. +886 4 26318652; Fax: +886 4 26525245; email: fan@sunrise.hk.edu.tw

Received 17 December 2016; Accepted 16 July 2017

ABSTRACT

This study focuses on a novel technique for determining intraparticle diffusivity (D_p) and fluid-film mass transfer coefficient (k_p) using a recycling type fixed-bed reactor. The detail analysis technique is established in this study. The D_p and k_p values of phenol on XAD-2000 are 7.26–11.4 × 10⁻⁶ (cm² s⁻¹) and 0.0035–0.0062 × 10⁻³ (cm s⁻¹), respectively. The obtained D_p values are similar to the values obtained in the shallow bed reactor 1.6–2.7 × 10⁻⁶ (cm² s⁻¹). The method has significant advantages over the conventional shallow bed method in chemical/solution saving with easy operation. This technique is useful to estimate diffusivities of phenolic compounds onto resins, especially when the fluid-film mass transfer resistance cannot be negligible.

Keywords: Phenol; Recycling shallow bed reactor; Adsorption; Intraparticle diffusivity; Fluid film mass transfer coefficient

^bDepartment of Safety, Health and Environmental Engineering, Hungkuang University, Taichung 433, Taiwan,

^cNatural Science Laboratory, Toyo University, Tokyo, Japan, email: seida@toyo.jp

^dDepartment of Applied Chemistry, Meiji University, Kawasaki, Japan, emails: tkino@meiji.ac.jp (T. Kinoshita); egfuruya@meiji.ac.jp (E. Furuya)

^{*} Corresponding author.