93 (2017) 100–108 October

Desalination and Water Treatment
www.deswater.com
doi: 10.5004/dwt.2017.21453

$\rm Fe_3O_4$ and $\rm Fe_3O_4/Fe^{2+}/Fe^0$ catalyzed Fenton-like process for advanced treatment of pharmaceutical wastewater

Nan Zhang, Guangming Zhang*, Ting Huang, Shan Chong, Yucan Liu

School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China, Tel. +86-108-2502680, email: zhangnan0923@163.com (N. Zhang), zgm@ruc.edu.cn (G. Zhang), Jason_huangting@163.com (T. Huang), chongshan@ruc.edu.cn (S. Chong), lyucan@163.com (Y. Liu)

Received 9 June 2017; Accepted 18 September 2017

ABSTRACT

Batch experiments were conducted for advanced treatment of pharmaceutical wastewater (after biological treatment) in a series of Fenton-like systems. Fe_3O_4 - H_2O_2 system had the highest reactivity for COD removal comparing to classic Fenton and Fe^0 - H_2O_2 systems. Effects of crucial experimental factors were investigated, including H_2O_2 and Fe_3O_4 dosage, pH, and reaction time. To reach 20% COD removal, the optimal conditions were pH of 3.0, Fe_3O_4 dosage of 1.0 g/L, and H_2O_2 dosage of 10 mg/L. Comparing with the classical Fenton's reaction, the Fe_3O_4 - H_2O_2 system saved 75% H_2O_2 , reduced 47% excess sludge, and slightly improved the COD removal. Furthermore, in order to meet the upcoming new local standard, Fe^{2+} and Fe^0 were introduced into Fe_3O_4 - H_2O_2 system to form a hybrid system, $Fe_3O_4/Fe^0/Fe^{2+}$ - H_2O_2 (pH of 3.0, Fe_3O_4 of 1.0 g/L, Fe^0 of 0.23 g/L, Fe^{2+} of 34 mg/L, and H_2O_2 of 40 mg/L). Fe⁰ and Fe^{2+} not only improved the COD removal and decreased iron sludge, but also enhanced the reuse of catalysts. Compared to the classic Fenton process, 80% H₂O_2 dosage was saved and 94% iron sludge was decreased. Meanwhile, the cost decrease by 1.66 RMB/m³-wastewater.

Keywords: Fe₃O₄; Fe⁰; Pharmaceutical wastewater; Heterogeneous Fenton-like process

*Corresponding author.

1944-3994 / 1944-3986 © 2017 Desalination Publications. All rights reserved.