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a b s t r a c t
Nanoscale zero-valent iron (nZVI) has been proven to be more effective for the treatment of hexavalent 
chromium(Cr(VI)) when modified with the transition metal Cu. In this study, biochar-supported 
Cu/Fe bimetallic nanoparticles (Cu-nZVI/BC) were prepared and used for Cr(VI) removal from aqueous 
solution. The effects of the pH value, the initial concentration of Cr(VI), coexisting ions and humic acids 
(HA) were investigated. The compositional structures of Cu-nZVI/BC were analyzed by transmission 
electron microscopy, scanning electron microscopy, X-ray diffraction and X-ray photoelectron 
spectroscopy. The maximum removal efficiency of Cr(VI) was 50.57% (126.41 ± 3.75 mg g–1) for 
Cu-nZVI/BC at pH 2. The adsorption kinetic data were in agreement with the pseudo-second- order 
model, which confirmed that the adsorption step was a chemical adsorption and reduction process. 
The presence of Ca2+ and NO3

– had an inhibitory effect on Cr(VI) removal, while dHA increased the 
removal efficiency at high concentrations. This study proves that Cu-nZVI/BC removal of solution 
Cr(VI) is feasible and shows significant potential in practical applications.
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1. Introduction

Chromium and its compounds are widely used in 
various fields of industrial production such as electroplat-
ing, paints, pigments, printing, and other industries that 
are indispensable for generating raw materials [1]. There 
are more than 10,000 electroplating factories in China, and 
the annual emissions of chromium-containing wastewater 
are more than 4 billion m3 [2]. Chromium exists in both the 
trivalent Cr(III) and the hexavalent Cr(VI) oxidation states; 
Cr(VI) is highly toxic and easy to accumulate in the body, 
causing skin, heart and respiratory diseases and other 
body damage. According to the World Health Organization 
(WHO) [3], the maximum contaminant level of total chro-
mium in drinking water should not exceed 0.05 mg L–1. 
Therefore, it is urgent to find effective methods to remove 
Cr(VI) from water.

Many technologies, including adsorption [4], chemical 
precipitation [5], ion exchange [6], photocatalysis [7], mem-
brane treatment [8], and reduction [9] were used in the 
removal of Cr(VI). Among these methods, the reduction 
of Cr(VI) to Cr(III) by nanoscale zero-valent iron (nZVI) is 
widely applied and considered an effective method for chro-
mium-contaminated wastewater treatment. nZVI is a very 
effective agent for removing heavy metals due to its high 
surface area and reactivity [10,11]. However, nZVI is easily 
agglomerated and oxidized in some environments, which 
results in low reactivity [12]. To address these issues, resin 
[13], activated carbon [14], biochar [15] and other substances 
[16] have been used as porous-based support materials 
for the nZVI. In comparison with other materials, bio-
char has proven to be a cost-effective and environmentally 
friendly nZVI support due to its large porosity and specific 
surface area [17].
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Another drawback of nZVI is the formation of iron 
oxide layers on the surface which decreases its reactivity 
[18]. It was found that deposition of a second metal such as 
copper [19], nickel [20] and palladium [21] on the surface 
can enhance the generation of electrons available to reduce 
pollutants and increase the activity. Copper (Cu) shows a 
distinct advantage over other noble metals due to its low 
cost. In addition, Cu is also one of the essential trace elements 
for animals and human health [22]. Therefore, copper-iron 
bimetallic nanoparticles are the preferred choice for nZVI 
modification when evaluating the cost-effectiveness of water 
treatment [19,23].

In this study, biochar-supported Cu/Fe bimetallic nano-
particles (Cu-nZVI/BC) were prepared and used to detoxify 
of Cr(VI) from solutions. The structures of Cu-nZVI/BC were 
characterized by Brunauer-Emmett-Teller surface area (SBET), 
transmission electron microscopy (TEM), scanning electron 
microscopy (SEM) analysis, magnetic, X-ray diffraction 
(XRD) and X-ray photoelectron spectroscopy (XPS) analyses. 
The effects of the solution pH, the initial concentration of 
Cr(VI), the kinetics of Cr(VI) removal, the coexistence of 
ions and humic acids (HA) were also examined.

2. Materials and methods

2.1. Materials

Ferrous sulfate heptahydrate (99.95% metal basis) and 
sodium borohydride (98% purity) were purchased from the 
Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, 
China). Other reagents were provided by the Sinopharm 
Chemical Reagent Co., Ltd. (Shanghai, China). Biochar was 
prepared from  a herb residue (Astragalus membranaceus) 
at a temperature of 400°C for 2 h under nitrogen.

2.2. Methods

2.2.1. Preparation of Cu-nZVI/BC

The Cu-nZVI/BC were prepared by a borohydride liq-
uid reduction method via the following steps: biochar 
(2.1 g) was dissolved in 500 mL of a solution containing 
FeSO4·7H2O (0.075 mol L–1) and CuSO4·5H2O (0.003 mol L–1) 
and stirred vigorously for 4 h under nitrogen. After stirring, 
NaBH4 solution (0.6 mol L–1, 500 mL) was added dropwise, 
which was followed by another 60 min of stirring under 
nitrogen. The black composite particles were separated from 
the liquid phase, washed with absolute ethanol and finally 
vacuum dried at 60°C for 12 h. The water used in this study 
was bubbled with nitrogen for 2 h before use.

2.2.2. Adsorption experiments

Adsorption experiments were performed using glass 
bottles (250 mL) at 25°C, and the pH of the solution was 
adjusted to the required values with 0.1 mol L–1 NaOH 
and 0.1 mol L–1 HCl. The effect of solution pH on Cr(VI) 
(50 mg L–1) adsorption onto Cu-nZVI/BC (0.2 g L–1) was 
studied (pH: 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0). The effect of the 
initial Cr(VI) concentration was investigated in the range of 
10–125 mg L–1 at a pH of 2.0. In addition, the effects of the 
coexisting ions (Cl–, NO3

– and Ca2+, 5 and 10 mmol L–1) and 

HA (1, 5, and 10 mg L–1) were studied. The water samples 
were removed at regular time intervals and filtered through 
a 0.22 μm filter film. The concentration of Cr(VI) was mea-
sured with a 1,5-diphenylcarbazide spectrophotometric 
method using an ultraviolet spectrophotometer at 540 nm. 
Experiments in this study were performed in triplicate. 
The reaction time of all the batch experiments was 240 min.

2.3. Characterizations of Cu-nZVI/BC

The SBET and pore volume (Vpore) of Cu-nZVI/BC were 
calculated by a surface analyzer (QUANTATECH, Auto-
sorb-iQA3200-4, USA) with N2 adsorption. TEM images 
were obtained by measuring the basic morphology of 
Cu-nZVI/BC with a JEM 2100F electron microscope at an 
acceleration voltage of 200 kV. Magnetic properties were 
determined using a SQUID-VSM vibrating sample mag-
netometer (Quantum Design, USA). Surface analysis of 
Cu-nZVI/BC was performed with a monochromatic Al 
X-ray source at 150 W using XPS (Thermo ESCALAB250Xi, 
USA). XRD patterns of Cu-nZVI/BC were obtained using an 
X-ray diffractometer (BRUKER, D8 ADVANCE, Germany) 
with a high-power Cu Ka radioactive source (λ = 0.154 nm) 
at 40 kV and 30 mA.

3. Results and discussion

3.1. Characterization of nanoparticles

According to the SEM images (Fig. 1), pores on the 
surface of the biochar are clearly shown, while there were 
some agglomerates on the surfaces of the nZVI/BC and 

(a) (b)

(d)(c)

(e)
(f )

Fig. 1. SEM images of (a) biochar, (b) nZVI/BC, and (c) Cu-nZVI/
BC; TEM images of (d) nZVI/BC and (e) Cu-nZVI/BC; 
(f) Magnetization curve of nanoparticles.
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Cu-nZVI/BC. The SBET decreased from 111.48 m2 g–1 (biochar) 
to 59.34 m2 g–1 (nZVI/BC) and 26.7 m2 g–1 (Cu-nZVI/BC) 
(Table 1). Previous studies have also shown that the sur-
face area decrease is due to the presence of iron oxides [2] 
and copper oxides [24], which decrease the surface areas 
of Cu-nZVI/BC. As shown in the TEM images (Figs. 1d 
and e), the particle size of Cu-nZVI/BC was in the range of 
50~100 nm. The spherical particles may be Fe0 agglomerates 
with a layered structure around the Fe core. The specific 
saturation magnetization (Ms) of nZVI/BC and Cu-nZVI/
BC was 89.79 and 73.93 emu g–1 (Fig. 1f). The high value of 
Ms guaranteed a magnetic-separation performance under 
an external magnetic field, which is an important advantage 
for the recycling of Cu-nZVI/BC after reaction.

Element mapping analysis (Fig. 2) and XPS survey 
spectra (Fig. 3a) indicated that Fe, Cu, C and O existed on the 
surface of Cu-nZVI/BC. In addition, the results of XRD anal-
ysis were shown in Fig. 3b. The major peaks were identified 
as Fe0(PDF: 06-0696, 2θ = 44.5°), FeOOH(PDF: 34-1226, 
2θ = 26.9°), Fe2O3(PDF: 25-1402, 2θ = 20.82° and 34.8°), and 
Fe3O4(PDF: 03-0863, 2θ = 35.45°), and the diffraction peaks 
with 2θ = 43.4° and 50.4° corresponded to copper [19]. 
The diffraction pattern indicated that the iron oxides and 
copper oxides were present on the surface of the biochar, 
and could be attributed to the decrease in surface area. In 
addition, the characteristic peaks at 2θ = 43.4° and 50.4° (Cu0) 
disappeared, and the characteristic peak was identified as 
Cr2O3(PDF: 03-1124, 2θ = 54.93°) after reacting with Cr(VI), 
indicating the reduction of Cr(VI) to Cr(III) [25].

3.2. Influence of copper modification and solution pH

Fig. 4a shows the removal performance of biochar, nZVI/
BC and Cu-nZVI/BC. When BC added, the removal efficiency 
was 11.64%, indicating the weak ability of biochar to absorb 
Cr(VI). When combined with the effect of nZVI/BC and 
Cu-nZVI/BC, the Cr(VI) removal efficiency reached 39.37% 
and 49.68%, respectively. The results strongly revealed that 
Cu-nZVI/BC provided better chromium removal ability than 
nZVI/BC(p < 0.05). The reason for this difference may be that 
copper acted as a catalyst to accelerate the corrosion of nZVI 
and promoted the removal [26].

The effect of the initial solution pH on Cr(VI) removal 
is shown in Fig. 4b, and demonstrated that the acidic pH 
benefited the removal process. The removal efficiency was 
50.57% at pH 2.0 (qe, 126.41 ± 3.75 mg g–1) and decreased 
to 43.77% (pH 3.0) and 4.94% (pH 7.0) (p < 0.05). Similar 
results were observed when Fe0/Cu bimetallic nanoparticles 

were used to remove Cr(VI) [27]. Chromium exists in dif-
ferent forms at different pH values (e.g., H2CrO4, HCrO4

–, 
Cr2O7

2–, CrO4
2–) [28]. When the pH < 3, the predominant 

Cr(VI) species in solution is HCrO4
–; HCrO4

– converts to 
Cr2O7

2– and CrO4
2– with an increase in pH [2]. The maximum 

removal efficiency of Cr(VI) at low pH is mainly due to the 
adsorption of HCrO4

−. The adsorption free energy of HCrO4
− 

(−2.5 to −0.6 kcal mol–1) is lower than that of CrO4
2− (−2.1 to 

−0.3 kcal mol–1), and consequently, HCrO4
− is more favorably 

adsorbed [29].
Moreover, acidic pH could provide cleaner surface of the 

material and promote decomposition of the surface oxide 
layer, thus accelerating the corrosion of the copper-iron 
bimetallic nanoparticles. Exposing surface active sites of 
Cu-nZVI/BC led to an increase in the removal capacity of 
Cr(VI). Under alkaline conditions, precipitation was easily 
produced, which passivated the surface of Cu-nZVI/BC. 
This process prevented contact between Cu-nZVI/BC and 
Cr(VI) and thus decreased the removal efficiencies.

3.3. Adsorption isotherm

The removal capacity of Cr(VI) decreased from 100% 
to 19.04% when its initial concentration increased from 
10 to 125 mg L–1 (Fig. 5a). This is because the initial Cr(VI) 
concentration increased and the amount of Cu-nZVI/BC 
added remained unchanged, resulting in a decrease of 
adsorption sites on the surface of Cu-nZVI/BC [30].

Langmuir Eq. (1) and Freundlich Eq. (2) models were 
applied to fit the experimental data, and the results are 
shown in Fig. 5b:

c
q

c
q q K

e

e

e

m m L

= +
1  (1)

Table 1
Textural properties of biochar, nZVI and Cu-nZVI/BC

Sample SBET (m2 g–1) Smic (m2 g–1) VTot (cm3 g–1) Vmic (cm3 g–1) C (%) Fe (mg g–1) Cu (mg g–1)

Biochar 111.48 50.43 0.095 0.0258 57.65 – –
nZVI/BC 59.34 4.298 0.119 0.0193 17.83 159.41 –
Cu-nZVI/BC 26.7 3.848 0.062 0.0190 12.84 93.425 6.175

Smic: the micropore surface area calculated with the t-plot method
VTot: total pore volume
Vmic: pore volume calculated by using the t-plot method

Fig. 2. The elemental mapping images of the Cu-nZVI/BC: (a,b,c) 
and after reaction:(d, e, f, g).
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log log logq K
n

ce f e= +
1

 (2)

where Ce (mg L–1) is the equilibrium concentration of Cr(VI); 
qe (mg g–1) is the Cr(VI) adsorbed capacity at equilibrium; 
qm (mg g–1) is the maximum adsorption capacity; KL (L mg–1) 
and Kf (mg g–1) (L mg–1)1/n are the Langmuir and Freundlich 
isotherm constants; and n is a constant related to the affinity 
between the adsorbent and absorbate.

The Langmuir isotherm model (R2 = 0.998) yielded a bet-
ter fit than the Freundlich isotherm model (R2 = 0.955). The 
Langmuir model assumes that the adsorption occurs on the 
surface of Cu-nZVI/BC by monolayer adsorption, and the 
no interaction occurs between pollutant molecules [31]. In 
addition, the Langmuir model also indicates that adsorption 
processes are controlled by chemical reactions. The result 
confirmed that Cu-nZVI/BC have a strong removal efficiency 
for Cr(VI).

3.4. Adsorption kinetics

In this study, pseudo-first-order (PFO) Eq. (3) and pseudo- 
second-order kinetic (PSO) Eq. (4) models were used to fit 
the experimental data, and the results are shown in Figs. 5c 
and d and Table 2.

ln lnq q q k te t e−( ) = − 1
 (3)

t
q k q

t
qt e e

= +
1

2
2  (4)

where k1 (min–1) and k2 (g mg–1 min–1) are the rate constants 
for PFO and PSO kinetic models, and qt and qe are the Cr(VI) 
adsorption capacities (mg g–1) at time (t) and at equilibrium.

According to the results, the correlation coefficient values 
(R2) of the PSO models were higher than the values of the PFO 
models. Additionally, the qe,cal values from PSO models were 

(a) (b)

Fig. 3. (a) XPS survey spectra and (b) XRD analysis for Cu-nZVI/BC.

(a) (b)

Fig. 4. (a) Removal efficiency of Cr(VI) and (b) the influence of pH on Cr(VI) removal efficiency and adsorption capacity (initial con-
centration = 50 mg L–1).
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closer to the experimental values (qe,exp) than the values of the 
PFO models. These results indicated that the Cr(VI) sorption 
process follows a PSO mechanism and that the rate-limiting 
step may be a chemical adsorption process. These results 
were consistent with previous results. Compared with other 
materials listed in Table 3, Cu-nZVI/BC demonstrated a good 
ability for Cr(VI) removal.

3.5. Effect of coexisting ions and HA

As shown in Fig. 6, the influence of coexisting ions 
(Cl–, NO3

– and Ca2+) and HA on the adsorption capacity 

(a)
(b)

(c)
(d)

Fig. 5. (a) Effect of initial concentration, (b) equilibrium adsorption isotherms model, (c) pseudo-first-order kinetic, and (d) pseudo- 

second-order kinetic model of Cr(VI) removal.

Table 2
Kinetic parameters for the adsorption of Cr(VI) onto Cu-nZVI/BC

C0 (mg L–1) qe (mg g–1)

Pseudo-first-order kinetics Pseudo-second-order kinetics

qe,cal (mg g–1) k1 (min–1) R2 qe,cal (mg g–1) k2 (g mg–1 min–1) R2

20 100.33 66.55 0.0763 0.9393 114.94 0.0087 0.9894
40 147.46 107.09 0.0059 0.9346 132.63 0.0051 0.9914
50 137.99 103.86 0.0022 0.8616 142.86 0.006 0.969
75 137.06 114.88 0.0011 0.9473 131.23 0.0069 0.979
100 117.36 83.72 0.0005 0.9656 122.40 0.0082 0.994

Table 3
Adsorption capacities of various some adsorbents for Cr(VI) 
removal

Materials pH C0 (mg L–1) qe (mg g–1) References

Biochar 2.0 100 49.55 [51]
Activated carbon 3.0 100 35.02 [52]
nZVI 3.0 25 17.61 [53]
nZVI/BC 2.0 20 99.98 [54]
Cu-nZVI/BC 2.0 20 100.33 Present work
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of Cu-nZVI/BC for Cr(VI) removal over 240 min were 
investigated. From Fig. 6a, the removal capacity of Cr(VI) 
decreased from an initial value of 123.20 ± 4.18 mg g–1 for the 
control group to 124.91 ± 1.91 mg g–1 and 121.03 ± 1.20 mg g–1 
when the concentrations of Cl– were 5 and 10 mM (p > 0.05), 
respectively. The results demonstrated that Cl– had no obvi-
ous influence on Cr(VI) removal compared to the control 
samples. In contrast to other studies [32,33], NO3

– inhib-
ited the removal capacity of Cr(VI) in this study (i.e., from 
123.20 ± 4.18 mg g–1 for the control to 102.42 ± 4.50 mg g–1 with 
5 mM NO3

– and 109.90 ± 1.65 mg g–1 with 10 mM NO3
–). These 

chances could result from NO3
– oxidizing nZVI to form an 

oxide layer, leading to the passivation of the material [34]. 
The removal capacity of Cr(VI) significantly decreased to 
101.39 ± 1.11 mg g–1 and 99.57 ± 1.17 mg g–1 with addition of 
5 and 10 mM Ca2+. The main reason for this difference could 
be that the presence of Ca2+ resulted in nZVI aggregation and 
thus reduced Cr(VI) removal reactivity [35].

Previous studies have shown that the effect of HA on 
Cr(VI) removal was inconsistent, including both promotion 
and inhibition. Zhu et al. [36] found that the presence of 
HA in aqueous media can inhibit the Cr(VI) removal effi-
ciency. This result might have been due to HA competing 
with Cr(VI) adsorbed on the active surface sites of nZVI/
Cu, thus reducing Cr(VI) removal efficiency. However, the 
removal efficiency of Cr(VI) was 51.55%, 58.13%, 67.30%, and 
68.79% at HA concentrations of HA  0, 1, 5, and 10 mg L–1, 
respectively (p < 0.05). Thus, HA had a promoting effect on 
the Cr(VI) removal. The underlying reasons might be that 
(a) HA served as a bridge to stabilize Cu-nZVI/BC particles, 
thus increasing the removal efficiency of Cr(VI) [37]; (b) HA 
served to transfer electrons between Cr(VI) and Cu-nZVI/
BC, accelerating Cr(VI) removal efficiency [38]; and (c) the 
negatively charged HA can be adsorbed on the surface of 
Cu-nZVI/BC, allowing the surface-bound HA to induce a 
shift from Cr(VI) to Cr(III) [39].

3.6. Mechanism of Cr(VI) removal by Cu-nZVI/BC

To investigate the Cr(VI) removal mechanism, the XPS 
spectrum of Fe 2p, Cr 2p, and C 1s XPS spectra of the Cu-nZVI/

BC composites before and after reaction with Cr(VI) were 
obtained (Fig. 7). The C 1s spectrum of fresh Cu-nZVI/BC 
showed three peaks with binding energies of approximately 
284.55, 285.25, and 286.79 eV, which are attributable to the 
–CHx, –C–O and O=C–O, respectively. The intensity of the 
O=C–O peak at 286.79 eV increased from 17.73% to 24.83% 
after reaction with Cr(VI). These changes demonstrated that 
–C–O and O=C–O may be involved in chromium removal. 
These results are in good agreement with other studies [40], 
which concluded that carboxyl and hydroxyl groups play 
important roles in heavy metal adsorption.

Additionally, the peaks at 710.7 and 712.6 eV correspond 
to the binding energies of Fe 2p3/2 for Fe(II) and Fe(III), 
while the peaks at 723.9 and 726.0 eV were assigned to Fe 
2p1/2 of Fe(II) and Fe(III), respectively [41]; the peaks at 
707 eV correspond to Fe0 [42]. Comparing to the XPS spec-
tra of fresh Cu-nZVI/BC and Cu-nZVI/BC after the reaction 
with Cr(VI), the fact that the peak of Fe0 disappeared after 
reaction can be inferred as a result that Fe0 was involved 
in the reaction between Cu-nZVI/BC and Cr(VI). A sur-
vey XPS spectrum suggested that Cr(VI) was reduced to 
Cr(III). The Cr 2p spectra as shown in Fig. 7c after the reac-
tion have two peaks, one at 577.6 eV (Cr 2p3/2) and one 
at 587.5 eV (Cr 2p1/2) [43]. Montesinos et al. [44] assigned 
the binding energy at 577.6 eV to Cr oxide [45], while the 
peak at 587.5 eV corresponded to the binding energies of 
Cr hydroxide, indicating that co-precipitates were formed 
during Cr(VI) adsorption and reduction [46]. The XRD 
results (Fig. 3b) indicated that the presence of Cr2O3 on 
the surface of the material after the reaction, which could 
indicate that the removal of Cr(VI) by Cu-nZVI/BC was a 
chemical adsorption process.

The XPS showed that Fe(II) was oxidized and Cr(VI) 
was reduced to Cr(III) during treatment. The effects of 
ferrous ions on Cr(VI) removal were studied by the addi-
tion of 1,10-phenanthroline and EDTA into the solution. 
The results showed that the Cr(VI) removal capacity 
significantly decreased when the 1,10-phenanthroline con-
centration increased (Fig. 8a). The reason for this may be 
that 1,10-phenanthroline could form a complexation of Fe(II) 
that prevented Fe(II) from reducing Cr(VI) [47]. The removal 

(a) (b)

Fig. 6. Effect of (a) coexisting ions and (b) HA on the adsorption capacity of Cu-nZVI/BC for Cr(VI) adsorption.



127F. Shao et al. / Desalination and Water Treatment 158 (2019) 121–129

(a) (b)

(c) (d)

Fig. 7. XPS survey spectra of Cu-nZVI/BC before and after reaction: (a) the C 1s region, (b) the Fe 2p region, (c) the Cr 2p region, and 
(d) the O 1s region.

Fig. 8. Effect of (a) Phenanthroline and (b) EDTA on the adsorption capacity of Cu-nZVI/BC for Cr(VI) adsorption.
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capacity of Cr(VI) increased from 128 to 250 mg g–1 when 
EDTA was added to the Cr(VI) solution, which showed that 
EDTA enhanced Cr(VI) removal (Fig. 8b). EDTA could inhibit 
precipitation of Fe2+/Fe3+ and thus decrease passivation on 
the surface of Cu-nZVI/BC [48], which may be the reason for 
the increasing removal capacities of Cr(VI) [49]. The above 
results proved that Fe2+ has a crucial contribution to the 
removal of Cr(VI) [50].

4. Conclusions

In the present research, biochar supported Fe/Cu bimetallic 
nanoparticles were prepared, characterized and used for 
Cr(VI) removal experiments. The removal efficiency of 
Cu-nZVI/BC was investigated based on different influencing 
factors, including the pH, the initial concentration of Cr(VI), 
the coexisting ions and HA. The performance of Cu-nZVI/
BC in removing Cr(VI) was highly dependent on pH, and 
the maximum qm occurred at pH 2. The experimental data 
followed the PSO model, and the Langmuir isotherm model 
was the best-fitting isotherm model. Coexisting ions (Cl–, 
NO3

– and Ca2+) inhibited Cr(VI) removal, while HA promoted 
Cr(VI) removal. Reduction of Cr(VI) to Cr(III) and chemical 
adsorption of Cr(VI) were the possible mechanisms for the 
interaction between Cu-nZVI/BC and Cr(VI). Cu-nZVI/
BC prepared with low-cost herb-residue is an efficient and 
environmentally friendly detoxification material for Cr(VI) 
detoxification in wastewater.
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