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a b s t r a c t
Wastewater treatment generates considerable amounts of sludge. Reducing sludge volume by 
dewatering is an important part of many wastewater treatment processes. We investigated the effects 
of a combination of sodium dodecyl sulfate (SDS) and polydimethyldiallylammonium chloride 
(PDMDAAC) on anaerobically digested sludge dewaterability. Capillary suction time (CST) and spe-
cific resistance to filtration (SRF) were measured as indicators of sludge dewaterability. Extracellular 
polymeric substances (EPS) content, particle size, zeta potential, and bound water in sludge floc 
were also measured. We found that CST increased from 348.5 to 530.5 s as the SDS dosage increased. 
However, with a dose 0.03 g g–1 DS PDMDAAC only, SRF and CST were 3.78 × 1012 m kg–1 and 79.2 s; 
with a combined dose of 0.025 g g–1 DS SDS and 0.03 g g–1 DS PDMDAAC, SRF and CST decreased 
to 3.21 × 1012 m kg–1 and 68.7 s. These results indicate that above a certain dose, SDS reduces sludge 
dewaterability and that an optimum dose of SDS in sludge pre-treatment would improve subsequent 
PDMDAAC conditioning. Sludge conditioned with a combination of SDS and PDMDAAC increases 
dewaterability more than conditioned with SDS only or PDMDAAC only. Freeing EPS-bound water 
with SDS followed by re-flocculation using PDMDAAC gave improvement in sludge dewaterability.

Keywords:  Sludge dewatering; Sodium dodecyl sulfate; Polydimethyldiallylammonium chloride; 
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1. Introduction

Large quantities of sludge are generated by wastewater 
treatment processes, and over 90% of the sludge is water [1]. 
Dewatering is a vital part of the sludge treatment process as it 
reduces sludge volume and, consequently, the transportation 
and disposal costs of the sludge. The mechanical press, which 
consumes low energy, is widely used to reduce sludge vol-
ume [2]. However, extracellular polymeric substances (EPS) 
are highly hydrated and able to bind a large volume of water 
in sludge. This significantly limits sludge dewatering [3]. The 

choices of conditioning chemicals are important for maxi-
mum sludge dewatering. Many studies have been conducted 
to increase sludge dewaterability by using conditioning 
chemicals [4–6]. Typical chemical additives include alumi-
num sulfate, ferric chloride, polyelectrolytes, and surfactants 
[7]. Surfactants decrease the surface tension between aque-
ous and non-aqueous liquids. By releasing EPS from sludge, 
surfactants could also alter cell structures and thus affect the 
properties of the sludge [8]. Flocculants are widely used to 
improve sludge dewatering through physical and chemical 
conditioning processes. Flocculants overcome the repulsion 
between charged particles and increase the particle size of 
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sludge, leading to improved stability and dewaterability 
of the sludge [9]. The cationic surfactant (cationic cetyl-
trimethylammonium bromide) combined with the cationic 
flocculant (cationic polyacrylamide, CPAM) increases sludge 
dewaterability [10].

Sodium dodecyl sulfate (SDS) is an anionic surfactant. 
The amphiphilic molecules have two parts, one of which, 
the hydrophilic head is hydrophilic, and the other, the 
hydrophobic tail chain is hydrophobic. SDS causes the 
sludge matrix to break up and increases the solubilization 
of EPS in sludge. It also increases soluble protein and car-
bohydrate concentrations [11]. It has been observed that the 
addition of SDS on its own leads to a decrease in sludge 
dewaterability [12]. However, Besra et al. [13] studied 
the dewatering of kaolin suspensions by CPAM floccu-
lants in the presence of SDS and found that the addition 
of CPAM and SDS substantially reduced cake moisture. 
Polydimethyldiallylammonium chloride (PDMDAAC) is a 
green cationic organic polymer with a high positive charge 
density that has been widely used in sludge dewatering 
because of its adsorption and binding capabilities [14].

There are few studies of the effects of a combination of 
SDS and cationic flocculants on the physicochemical prop-
erties of sludge. We examined changes in dewaterability 
and floc properties of sludge conditioned by SDS and SDS 
combined with PDMDAAC (SDS–PDMDAAC). We observed 
the characteristics of EPS and the surface characteristics 
and microstructure of sludge treated with both conditioners 
and compared them.

2. Materials and methods

2.1. Materials

The sludge was obtained from the Gaobeidian 
Wastewater Treatment Plant, Beijing, China. The sludge was 
treated by thermal hydrolysis at 160°C for 30 min followed 
by anaerobic digestion at 40°C for 20 d. The characteristics 
of the sludge are given in Table 1. The SDS was supplied 
by Tianjin Guangfu Fine Chemical Research Institute, China, 
and the 40% w/w aqueous solution of PDMDAAC, which 
had 100% charge density, was supplied by SNF Flocculant 
Co., Ltd., China.

2.2. Batch experiments

Sludge samples were prepared at room temperature of 
24°C ± 1°C. In each case, a 800 mL of sludge sample was added 

in a 1,000 mL beaker. Then, sludge sample was homogenized 
by stirring at 300 rpm for 1 min using a magnetic stirrer. 
The conditioner was added (0.025–0.2 g g–1 DS SDS) and the 
tank was stirred for 5 min. After this time, 400 mL of the 
sample was poured out to measure the sludge properties. 
Then 0.03 g g–1 DS PDMDAAC was added to the remaining 
400 mL of conditioned sludge, and the mixture was rapidly 
stirred at 300 rpm for 1 min and then stirred at 100 rpm 
for 5 min.

2.3. Analytical methods

2.3.1. Sludge dewaterability assessment

Capillary suction time (CST) and specific resistance to 
filtration (SRF, m kg–1) were measured to determine sludge 
dewaterability. CST was measured with CST apparatus 
(Model 319, Triton, UK) using an 18 mm diameter funnel and 
Whatman No. 17 chromatography-grade filtration paper. 
The SRF measurement was made in a Büchner funnel using 
a quantitative filter paper. The Büchner funnel was filled 
with 100 mL sludge, and a constant pressure of 0.1 MPa was 
maintained by a vacuum pump. The SRF of the sludge was 
calculated by:

SRF = 2 2PA b
µω

 (1)

where P (kg m–2) represents the pressure applied, A (m2) is 
the filter area, b is the slope of the curve plotting the ratio of 
the time of filtration to the volume of filtrate (t/V) against the 
filtrate volume (V), µ (kg s m–2) is the kinetic viscosity, and 
ω (kg m–3) is the dry solid weight per unit volume of sludge 
on the filtrate media.

2.3.2. EPS characterization

2.3.2.1. EPS extraction

EPS were classified as soluble, loosely bound, and tightly 
bound (S-EPS, LB-EPS, and TB-EPS) according to the strength 
of the bond between EPS and sludge micelles. A sludge sam-
ple was centrifuged in a 50 mL tube at 3,000 g for 10 min. The 
supernatant was collected as S-EPS. The residual sediment 
in the tube was re-suspended to 50 mL with a 0.05% (w/w) 
sodium chloride solution, sonicated at 20 kHz for 2 min, 
shaken horizontally at 150 rpm for 10 min, sonicated again 
for an additional 2 min, and centrifuged at 8,000 g for 10 min. 
The supernatant was collected as LB-EPS. The sludge pellet 
in the tube was re-suspended as before, sonicated for 3 min, 
heated at 60°C for 30 min, and centrifuged at 10,000 g for 
20 min, the supernatant was collected as TB-EPS [15].

2.3.2.2. EPS composition

The supernatant collected from the liquid fraction of the 
EPS was filtered through a 0.45 µm syringe–driven filter 
(Millipore Co., USA) before analysis. The protein (PN) con-
tent of the supernatant was determined by the BCA method 
using a BCA protein assay kit, and polysaccharide content 
was determined using the anthrone method with standard 
glucose [16].

Table 1
Sludge characteristics

Indicator Sludge

Moisture content (%) 95.8
VS/TS (%) 55.3
CST (s) 348.5
SRF (m kg–1) 5.82E + 12
d0.5 (µm) 19.3
Zeta potential (mV) −13.2
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Three-dimensional excitation–emission matrix (3D-EEM) 
fluorescence spectra was obtained using a fluorescence spec-
trophotometer (F-4500, Hitachi, Japan) with an excitation 
range 200–400 nm and an emission range 220–550 nm. The 
spectra were recorded at a scan rate of 12,000 nm min–1, using 
excitation and emission slit bandwidths of 5 nm.

2.3.3. Other indicators

Bound water content was measured by thermo gravimetric 
analysis (TGA). The sludge was first frozen at −20°C, and free 
water was totally removed by a freeze dryer (FD-100). The 
analysis was performed with TA Instruments (SDT-Q600, 
America) apparatus that simultaneously performs TGA 
and differential scanning calorimetry. The mass of the sam-
ples ranged from 5 to 10 mg. The heating rate applied to 
the samples was 10°C min–1, with a maximum temperature 
of 600°C, under N2 flowing at 100 mL min–1. When the 
temperature approached 105°C, the water in the sludge had 
been thoroughly eliminated [17].

Sludge floc size was determined by a Mastersizer 2000 
particle size analyzer (Malvern Instruments Ltd., UK). The 
d0.5 value given is the median value.

Zeta potential, an indicator of the electrostatic potential at 
the surface of the flocs, was measured by a Malvern Zetasizer 
3000 (Malvern Instruments Ltd., Malvern, UK).

All samples were measured in duplicate.

3. Results and discussion

3.1. Effect of SDS and SDS–PDMDAAC on 
sludge dewaterability

Foam might be generated by surfactants in the presence 
of SDS due to a decrease in the surface tension of the sludge. 
However, there was no obvious adverse effect from foam 
when the SDS dosage was <0.2 g g–1 DS [18]. We set an upper 
limit of 0.2 g g–1 for SDS dosage. The effects of SDS only and 
PDMDAAC dosage only on sludge dewaterability are shown 
in Fig. 1a. The CST values of sludge increased as the SDS 
increased; the CST value of the raw sludge increased from 
348.5 to 530.5 s when the dosage of SDS was 0.2 g g–1 DS, 
indicating a decrease in dewaterability. At the beginning of 
filtration, the small sludge particles clogged the filter paper, 
making extraction difficult, and we did not obtain values for 
SRF. This is consistent with other reports that SDS condition-
ing reduces sludge dewaterability [5,12]. However, when 
we used PDMDAAC alone for sludge conditioning, there 
was a sharp decrease in CST values as PDMDAAC dosage 
increased, and the minimum of 79.2 s was reached when the 
dosage of PDMDAAC was 0.03 g g–1 DS.

When the dosage of SDS was in the range 0.025–0.1 g g–1 
DS, the SRF and CST values for the sludge were lower than 
for sludge conditioned with only 0.03 g g–1 DS PDMDAAC 
(Fig. 1b). SRF and CST decreased from 3.78 × 1012 m kg–1 
and 79.2 s to the minimum values of 3.21 × 1012 m kg–1 and 
63.5 s. Both SRF and CST increased after the minimum was 
reached as the SDS dosage increased. These results show that 
sludge dewaterability was determined by the doses of SDS 
and PDMDAAC, and these two chemicals had a synergis-
tic effect on sludge dewaterability. Purcell et al. [19] found 
that SDS and polymer poly(vinylpyrrolidone) (PVP) interact 

cooperatively at the surface. We also characterized EPS and 
other sludge properties to further understand the mechanism 
of sludge dewatering.

3.2. Effect of SDS, combined SDS with PDMDAAC on EPS

3.2.1. EPS distribution and composition

EPS are high-molecular-weight biopolymers originating 
as bacterial secretions, cell lysis and hydrolysis products, 
leakage of exocellular constituents, and adsorbed organic 
matter from the surrounding wastewater. The distribution 
and composition of EPS affect sludge dewaterability [20]. 
Fig. 2a shows that EPS was solubilized and released into the 
liquid phase as the SDS concentration increased. When the 
SDS dosage was 0.075 g g–1 DS, extractable EPS and protein 
content (PN) of EPS increased to maximum values of 2,242.62 
and 1,696.71 mg L–1, and polysaccharide content increased 
from 377.87 mg L–1 to a maximum of 599.53 mg L–1. EPS 
are active in the formation of sludge particles [21], which 
aggregate to form larger flocs, thereby increasing sludge 
dewaterability [22]. The release of EPS in the sludge affects 
flocculation and results in CST increasing and decreased 
dewaterability.

Proteins and polysaccharides are major constituents of 
EPS [23,24]. The proteins and polysaccharides contain polar 
groups, so EPS easily interacts with surfactants, leading to 
the release of EPS [25]. The proteins and polysaccharides 
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Fig. 1. Effect of SDS and PDMDAAC on sludge dewaterability: 
(a) SDS only and PDMDAAC only and (b) combined SDS with 
0.03 g g–1 DS PDMDAAC.
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freed from S-EPS increase with the addition of SDS, espe-
cially at higher dosages (Figs. 2b and c). As SDS increased, 
the protein and polysaccharide content of S-EPS increased 
from 1,209.5 and 308.06 mg L–1 to maximum values of 
1,329.25 and 538.61 mg L–1. The protein and polysaccharide 
content of LB-EPS both initially increased but then decreased 
and became steady. Protein and polysaccharide content in 

LB-EPS were higher than that in LB-EPS of the raw sludge 
when the SDS dosage was in the range 0.025–0.075 g g–1 DS. 
This is because SDS deflocculated the sludge, which resulted 
in more proteins and polysaccharides being freed from 
LB-EPS. Protein and polysaccharide content in LB-EPS both 
decreased while S-EPS in the sludge increased significantly 
when the dosage of SDS was in the range 0.1–0.2 g g–1 DS, 
indicating that SDS likely transformed some of the LB-EPS 
fraction into S-EPS. Protein and polysaccharide content 
in TB-EPS first decreased and then increased. LB-EPS and 
TB-EPS are highly hydrated, but the addition of SDS caused 
them to solubilize into an aqueous phase, which led to the 
release of bound water from the sludge [26].

EPS content of the sludge decreased significantly with 
a dosage of SDS and 0.03 g g–1 DS PDMDAAC compared 
with SDS conditioning only (Figs. 2a and 3a). The protein 
content of S-EPS was almost unchanged when the SDS dos-
age increased from 0 to 0.1 g g–1 DS (Fig. 3b). This was likely 
due to strong cationic groups and active adsorption groups 
in the PDMDAAC molecule, which can adsorb colloids 
[27]. However, as the SDS dosage continued to increase, the 
PDMDAAC dosage had no obvious effect on S-EPS. Thus 
the increase in S-EPS caused a significant increase in SRF 
and CST, and sludge dewaterability decreased. A compar-
ison of Figs. 2b and c with Figs. 3b and c shows that the 
protein and polysaccharide contents of LB-EPS which was 
treated with SDS-PDMDAAC were significantly lower 
than that treated with a low dose of SDS. There was little 
difference in TB-EPS protein and polysaccharide content, 
which suggests that SDS-PDMDAAC fractionated EPS only 
on the sludge surface.

3.2.2. 3D-EEM analysis

3D-EEM shows the composition of organic matter in 
water. The effect of SDS on EPS as shown by the 3D-EEM 
spectra and released EPS fluorescence are shown in 
Fig. 4. Three fluorescence peaks were detected: Peak A 
(λex/em = 225/340), aromatic proteins; Peak B (λex/em = 280/335), 
tryptophan-like proteins; and Peak C (λex/em

 = 330/410), 
humic substances [28]. The results given by 3D-EEM are 
consistent with the conclusion derived from Fig. 2. The 
intensity of released EPS fluorescence gradually increased 
as the dosage of SDS increased (Figs. 2a–g). The intensity 
of peaks A, B, and C increased from 1,149, 803.4, and 446.9 
to 1,619, 1,600, and 1,194 when the SDS dosage increased 
from 0 to 0.2 g g–1 DS. Humic substances contained more 
hydrophobic fractions, indicating that protein, protein-like 
substances, and humic substances were more easily solubi-
lized and released from the sludge by SDS and that bound 
water was freed.

3.3. Effect of SDS, combined SDS with PDMDAAC on zeta 
potential and particle size

Zeta potential is a measurement of the charge at the 
sludge surface. The charge difference between the sludge 
surface and the surrounding liquid affects sludge dewat-
erability [29]. Fig. 5a shows the effect of SDS alone and a 
combination of SDS with 0.03 g g–1 DS PDMDAAC on zeta 
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Fig. 2. Effect of SDS dosage on content of (a) different EPS 
fractions, (b) protein, and (c) polysaccharide.
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potential. The zeta potential of the sludge was initially mea-
sured as –13.2 mV. It decreased significantly with the addi-
tion of SDS, reaching a minimum of –15.72 mV at higher SDS 
concentrations. The surfaces of both sludge flocs and EPS are 
normally negatively charged. The anionic surfactant SDS 

increased the negative charge, leading to a disaggregation 
of EPS and sludge flocs. The addition of cationic flocculants 
neutralizes the negative surface charge of sludge parti-
cles, which results in the particles becoming destabilized 
and aggregated. PDMDAAC is a highly-charged cationic 
polymer flocculant which is effective through adsorptive 
neutralization and polymer bridging [30]. Zeta potential 
reached a maximum of –7.37 mV when the dosage of SDS 
was 0.075 g g–1 and a dose of 0.03 g g–1 PDMDAAC-DS 
was added, and it decreased with increased SDS dosage 
(Fig. 5a). This indicates that excess SDS attenuated the 
cationic neutralization by PDMDAAC.

Average floc size (d0.5, µm) of the sludge is 21.27 µm 
(Fig. 5b). Average floc size decreased slightly as SDS 
increased, reaching a minimum of 19.03 µm when the 
SDS dosage was 0.15 g g–1 DS. Wilen et al. [31] found that 
EPS greatly affects sludge flocculation. When SDS is added, 
EPS on the sludge surface gradually solubilizes, affecting 
flocculation. However, there is no obvious change in floc 
size, which indicates a stable floc structure during SDS 
treatment, consistent with the results of the 3D-EEM anal-
ysis. However, when the PDMDAAC dosage was 0.03 g g–1 
DS, average floc size increased significantly (Fig. 5b) and 
reached a maximum d0.5 of 68.7 µm when the SDS dosage 
was 0.05 g g–1 DS. As the SDS dosage further increased, 
d0.5 gradually decreased. Previous studies have shown 
that sludge particle size has a significant effect on sludge 
properties; smaller flocs can easily clog the cake during fil-
tration, thereby reducing sludge dewaterability [32]. Higher 
levels of SDS increase the quantity of fine particles in the 
sludge and decrease dewaterability.

3.4. Effect of SDS, combined SDS with PDMDAAC on bound 
water

Bound water influences sludge dewaterability, and 
decreasing the bound water content of sludge increases 
dewaterability [33]. Fig. 6 shows that bound water con-
tent decreased from 11.36% to a minimum of 4.16% as SDS 
increased. The explanation is as follows. The surface of the 
protein molecule is highly hydrophilic with –NH4

+, –COO–, 
and –OH, and the polar group forms a hydrated layer on 
the sludge particle surfaces. Protein is freed from the surface 
of the sludge when the SDS is added, reducing the quan-
tity of hydrophilic groups, reducing the adsorbed water 
content, and making the sludge surfaces less hydrophilic. 
Polysaccharides form strong water-floc bonds. As the poly-
saccharides move from the flocs into the liquid phase, the 
flocs become less capable of forming water bonds, and bound 
water in EPS is released and converted into free water [34].

Bound water in the sludge decreased to 4.03% with 
0.05 g g–1 DS SDS pre-treatment and 0.03 g g–1 DS 
PDMDAAC re-flocculation. EPS were freed after the SDS 
pre-treatment, which facilitated the conversion of bound 
water to free water. However, the quantity of bound water 
increased when the dosage of SDS was 0.15 and 0.2 g g–1 
DS. The quantity of bound water reached 12.72% when the 
dosage of SDS was 0.2 g g–1 DS. Increased SDS affects the 
charge neutralization capability of PDMDAAC, leaving more 
water bound to sludge flocs.
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Fig. 3. Effect of combined SDS with PDMDAAC (0.03 g g–1 DS) 
on content of (a) different EPS fractions, (b) proteins, and (c) 
polysaccharides.
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Fig. 4. Effect of SDS dosage on EEM profile of the released fluorophores: (a) raw sludge, (b) 0.025 g g–1 DS, (c) 0.05 g g–1 DS, 
(d) 0.075 g g–1 DS, (e) 0.1 g g–1 DS, (f) 0.15 g g–1 DS, and (g) 0.2 g g–1 DS.
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4. Conclusion

We investigated the effects of the anionic surfactant 
SDS and the highly-charged cationic polymer flocculent 

PDMDAAC on the dewaterability of anaerobically digested 
sludge. The results show that the SDS increases the release of 
EPS from sludge floc surfaces, which disaggregates sludge 
floc and reduces sludge dewaterability. CST increased 
from 348.5 s to a maximum of 530.5 s when the SDS dos-
age increased from 0 to 0.2 g g–1 DS. However, a fraction of 
bound water was freed from the floc. Sludge dewaterability 
was increased by a combination of SDS pre-treatment com-
bined with PDMDAAC for re-flocculation. Compared with 
a dose of 0.03 g g–1 DS PDMDAAC only, with the addition of 
combined 0.025 g g–1 DS SDS with 0.03 g g–1 DS PDMDAAC, 
SRF and CST decreased from 3.78 × 1012 m kg–1 and 79.2 s 
to 3.21 × 1012 m kg–1 and 68.7 s. The results indicate that 
an appropriate amount of SDS for sludge pre-treatment 
increases subsequent PDMDAAC dewatering and that the 
combination of SDS with PDMDAAC treatment was much 
more effective than conditioning with either SDS only or 
PDMDAAC only in increasing sludge dewaterability.
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