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a b s t r a c t
Arranged water quality sensors at key nodes or water sources in water supply network to achieve 
real-time monitoring can prevent water pollution incident. However, when pollution incident occurs, 
to use the information collected by the water quality sensors to accurately locate and predict the loca-
tion of pollutants (injection time, injection duration and injection quality) is a challenging problem. 
In this paper, the simulation optimization method which is the currently popular pollution source 
identification method is conducted an in-depth analysis and found that identification of pollution 
source in water supply network is an expensive optimization problem. So, the pollution source iden-
tification problem is converted into an expensive optimization problem in this paper. According to 
the characteristics of the problem, a collaborative based expensive optimization algorithm is 
proposed. According to the characteristics of water supply network, this algorithm proposes a more 
suitable strategy for each different variable to guide the search direction of the algorithm. The algo-
rithm uses Gaussian surrogate model as much as possible to ensure the identification accuracy. 
Finally, through simulation experiment, the validity, efficiency and stability of the proposed algorithm 
is verified.
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1. Introduction

In recent years, sudden and unexpected water pollu-
tion incidents often occur in China. Some drinking water 
incidents and malicious attack on water supply network 
have caused great economic loss and adverse social impact 
to our country [1,2]. To prevent water pollution incidents 
from causing major disasters and losses, urban water sup-
ply network needs to be equipped with real-time monitor-
ing system for drinking water safety. In this system, the 

real-time monitoring can be achieved by arranging water 
quality sensors at key nodes or water sources. However, 
when pollution incident occurs, it is a challenge to use the 
information collected by the water quality sensor to accu-
rately locate the pollution source and predict the location of 
pollutants, injection time, injection duration and injection 
quality.

In recent years, many scholars are trying to use the sim-
ulation–optimization model to transform pollution sources 
identification problems into optimization problems, and 
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then use the evolutionary computation method to get the 
optimal solution. A group researcher proposed a simulation– 
optimization method to solve the problems of nonlinear 
pollution sources identification. By continuously reading 
the sensor data, the pollution sources are predicted and cor-
rected [3–5]. Finally, pollution sources and pollutant release 
history are identified and proposed an adaptive dynamic 
optimization procedure based on evolutionary algorithms to 
search for the pollution sources properties (start time, posi-
tion, release history) and slowly converge to obtain the only 
optimal solution by adding new available sensors. In the 
hybrid optimization model proposed by Ayvaz [1], binary 
genetic algorithm (GA) and generalized reduced-order gra-
dient method are used to locate the information of pollution 
sources in underground water network. Sudhakaran et al. 
[6] considered the uncertainty of water demand of users, 
introduced different models to simulate water demand of 
users, and used GA to solve pollution sources identification 
problems. Deng et al. [7] proposed a Map Reduce based 
parallel niche GA for contaminant sources identification in 
water distribution network, the niche GA as an optimizer 
and EPANET as a simulator. Feng et al. [8] proposed a 
cultural algorithm for this problem. They also convert the 
pollution sources identification problem into a multimodal 
optimization problem and proposed a niching genetic algo-
rithm to solve it.

In the simulation–optimization method, optimization 
algorithm is used as an optimizer. In the optimization algo-
rithm, each individual needs to use EPANET as a simula-
tor to simulate the pollution incident, so as to calculate the 
fitness value. Taking BWSN2 as an example (the network 
contains 12,527 nodes, 2 reservoirs, 2 ponds and 20 sensors) 
to simulate a pollution sources event, it takes about 3 s to 
calculate the fitness value. When using a GA (population 
size of 100, running 100 generations), it took 329 min which 
are nearly 5.5 h. In the current research, the time required 
for small pipe networks such as Rossman 2000 (92 nodes) is 
small, and the EPANET simulation time is small, which is 
not expensive under some set parameters [9–15]. However, 
in a real environment, the number of urban pipe network 
nodes is usually huge, so there is bound to be more time 
consumed. Therefore, identification of pollution sources 
problems in town water supply network is an expensive 
optimization problem; so in the optimization process, 
EPANET simulator consumes a large amount of time cost. 
In order to minimize the harm of pollutants to public health, 
when a certain amount of water quality information is 
obtained, the pollution sources needs to be located as fast 
as possible.

In many practical engineering optimization problems, 
the objective function cannot be expressed clearly, and the 
optimization model is also complicated. Time-cost simu-
lation software is required for simulation and evaluation. 
Each calculation takes time and costs, hence are expen-
sive optimization problems. In 1998, some researcher 
used Gaussian random model in the branch-and-bound 
algorithm to provide the expected target values for non- 
sampling points [16–20]. The validity of the random model 
was analyzed and proved to be an efficient global optimi-
zation algorithm. In 2002, a group research introduced ran-
dom models to evolutionary algorithms and established 

global random models for global prediction. In 2004, oth-
ers researcher established a local model using a random 
model to perform local prediction in evolutionary algo-
rithms. In 2007, others researcher introduced a random 
model into the evolutionary algorithm to both establish 
a global model and establish a local model to accelerate 
the evolutionary efficiency.

Literature [10,33] are research papers on model-based sin-
gle-objective evolutionary algorithms. Literature [26] which is 
a research paper on model-based expensive multi-objective 
evolutionary algorithms. Literature [17,21,36,51], on mod-
el-based multi-objective evolutionary algorithms. Literature 
[42] on application of intelligent calculation methods in 
expensive optimization problems. Keane [21] and Li et al. 
[22] embedded a meta- modeling mechanism into the global 
search algorithm to achieve a balance between the prediction 
model and the global search algorithm. In 2014, with com-
bined the Gaussian prediction model and the optimization 
algorithm to solve the high-dimensional global optimiza-
tion problem [23]. In 2015, a group researcher embedded 
selection evaluation strategies into support vector machine 
prediction models to classify and predict constrained opti-
mization problems [4]. In 2017, others researchers solved 
high-dimensional expensive optimization problems by using 
cooperative swarm optimization [41].

An ordinary optimization algorithm requires a lot of 
iterative calculations and tens of thousands of evaluation 
times in order to obtain better results. In solving expen-
sive optimization problems by objective functions, the gen-
eral optimization algorithm with many times of iterations 
in the optimization process will lead to the use of a large 
number of expensive simulation models, seriously affect-
ing the performance and efficiency of the algorithm [23–26]. 
The key to solving expensive optimization problems is to 
reduce the use of expensive simulation models as much as 
possible without affecting the accuracy of the algorithm. 
Therefore, an appropriate surrogate model is introduced in 
the expensive optimization algorithm to replace the expen-
sive evaluation function for calculation. There are two main 
difficulties of the expensive optimization algorithm, one is 
how to set up a suitable surrogate model according to the 
sample points. The other is how to balance the use between 
the surrogate model and the expensive evaluation function 
so that the algorithm can search the optimal solution both 
quickly and accurately.

Pollution sources identification problem is a specific 
practical application with its own characteristics.

However, most evolutionary algorithms used in simu-
lation optimization are highly random heuristic algorithms, 
which are often not effective in solving such problems with 
many characteristics. Specific problems require specific anal-
ysis, and the search algorithm needs to be guided by the 
characteristics. On the other hand, in the expensive optimi-
zation algorithms, the accuracy of the surrogate model is 
often related to the sample selection [27–29]. In the complex 
problems, the smaller the range of the sample, the higher the 
prediction accuracy of the model. For these considerations, 
this paper uses collaborative algorithm, adopting differ-
ent strategies for different populations, achieving effective 
guidance for algorithm search. Moreover, only one variable 
will be changed for each population, and the other variables 
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will not be changed. This produces a small change range of 
the solution, and the prediction accuracy of the expensive 
model is improved. Collaboration exists widely in nature and 
social systems, such as parasitism, competition and predation 
of species in ecosystems, and competition and cooperation 
among groups in life working together to further the overall 
evolution.

In the field of intelligent computing, co-evolution refers 
to the evolutionary technology in which multiple objects 
conduct collaborative search through certain mechanisms 
and strategies. The study of cooperative co-evolutionary 
approach began in the 1990 from the ranking network of 
Hills. Potter and De Jong [37] studied the mechanism of 
populations’ co-evolution selection among multiple inter-
acting sub-populations. Subbu et al. [40] proposed a dis-
tributed cooperative co-evolutionary approach model and 
applied it to optimization problems. Gu et al. [11] proposed 
a bi-population based competitive co-evolutionary quan-
tum GA, and gave three competitive strategies to dynami-
cally adjust the population size. Wang et al. [43] proposed a 
bi-population based EDA algorithm. Sun et al. [41] proposed 
a co-evolution framework called mutable interactive learn-
ing that puts all variables independently in separate groups, 
iteratively discovers their relationships, merges the groups 
and groups the variables reasonably.

Tenne and Goh [42] proposed an automatic decomposi-
tion strategy with differential grouping, revealing the under-
lying interaction structure and forming subcomponents 
of decision variables to keep their interdependencies to 
a minimum, which is a good solution to the decomposing 
of variables of co-evolutionary algorithm being applied to 
large-scale global optimization. Wang et al. [43] proposed 
a particle swarm optimization with information sharing 
mechanism, the competitive and cooperative particle swarm 
optimization algorithm solves the problem of premature con-
vergence in global optimization problems to a certain extent. 
Deng et al. [7] proposed a multi-swarm self-adaptive coop-
erative optimization algorithm for genetic and ant colony. It 
introduced chaos optimization algorithm, multi-population 
cooperative strategy and adaptive control parameters into 
GA and ACO algorithms, enhancing the performance in 
solving complex optimization problems. Peng et al. [34] 
introduced niching-based multi-modal optimization in the 
standard co-evolutionary framework [44–46]. By providing 
more information partners to subcomponents for informa-
tion compensation, a simple and efficient clustering method 
is added to prevent combinatorial explosion and effectively 
reduce information loss during co-evolution and prevent 
sub-optimization problems.

The pollution sources identification problem is converted 
into an expensive optimization problem in this paper. First, 
the Gaussian random process is used to establish the surro-
gate model. Due to the characteristics of Gaussian random 
process and water supply network, this paper establishes a 
sub-model for each node of the pipe network and verifies 
its validity [47]. Considering the problem of getting trapped 
in local optimum of large pipe network and the range of 
samples predicted by the surrogate model, this paper pro-
poses solving pollution sources identification problems 
based on a collaborative expensive optimization algorithm, 
using different strategies to guide the population or variable 

for population search. Finally, the validity and efficiency of 
the proposed algorithm are verified.

2. Material and methods

2.1. Pollution sources identification model

To ensure the safety of drinking water, a variety of water 
quality sensors are installed at the important nodes of the 
town water supply network for real-time monitoring of water 
quality information. Once pollution incidents occur, timely 
warning and appropriate treatment measures can be made. 
In order to get accurate pollution sources information, many 
researchers adopt the simulation optimization method to 
effectively locate the sources. After the pollution occurs, the 
water quality sensor detects the occurrence of the pollution 
and records a series of information such as the concentration 
of the pollutants [48]. Upon getting the information, a series 
of pollution incident will quickly be produced through the 
EPANET simulator. At the same time, the sensor of the simu-
lation software also records the corresponding data. By com-
paring the information recorded by the real sensor and by 
the simulation software, the most likely pollution incident 
is selected, that is, the located pollution sources information.

Simulation–optimization method is adopted in this paper, 
in which the pollution sources identification problem 
is converted into an expensive optimization problem for 
solving, and then evolutionary computation is used for opti-
mized solution [49]. From the optimization point of view, 
when the minimum variance of the cumulative concen-
tration and the actual cumulative detected concentration of 
the pollution incident at the sensor is 0 or less than a threshold 
value e, it is considered that the node injected by the pollution 
incident is the actual pollution sources. The optimization 
problem can be expressed as Eq. (1).
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where N is the total number of nodes in the network, Ns is 
the number of sensors, Ts is the simulation period, M is the 
pollutant injection vector, n is the network node number 
injected by pollution sources, tI is the initial time of pollut-
ant injection, cj(t) is the pollutant concentration of sensor j at 
time t, which is a function of (M,n,tI), and cj

*(t) represents the 
actual pollutant concentration measured by sensor j at time t. 
The goal of optimization is to find (M,n,tI) to minimize the 
variance.

The most important information in pollution sources 
identification problems is location and time. In other words, 
if a pollution incident occurs in the real environment, the 
most important thing is to obtain the location and time of 
the injection so as to facilitate timely investigation and han-
dling by relevant personnel. In the actual monitoring process, 
there will be errors in the quality information obtained by 
the sensor, the superposition of the final fitness value square 
error will be large [50]. So the quality information does not 
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necessarily need to be accurate, the most important thing is 
to get the exact location and time. In this paper, when eval-
uating the stability of the algorithm, whether the optimal 
solution can obtain the precise position and time are taken as 
the criteria for evaluation.

2.2. Collaborative based pollution sources identification algorithm

2.2.1. Collaborative approach

Collaborative algorithm adopts a “divide and rule” 
idea, which decomposes the complex problem into several 
sub-problems, and then solves each sub-problem separately, 
exchanges between the populations and cooperates to opti-
mize the collaborative algorithm. Distributed evolutionary 
algorithms in collaborative algorithm search for different 
sub-populations separately and share information through 
population migration. Different populations can use differ-
ent strategies and algorithms to achieve co-evolution [51,52]. 
This paper combines the characteristics. While decompos-
ing the problem, the characteristics of the specific problem 
of pollution sources are combined, different strategies 
are adopted to search for the variable space with different 
meanings. Under normal circumstances, decomposing the 
problem is a difficult but important issue. This paper is to 
solve pollution sources problem of four variables, it is clear 
that each variable is given the meaning, so each variable is 
divided into a sub-population. As mentioned in the above 
that the two variables, start time and duration, will jointly 
determine a continuous time series, they cannot be split. 
The specific framework is shown in the following figure:

As shown in Fig. 1, the populations are divided into 
three sub-populations after initialization—location, time and 
mass populations. They have the same decision variables 
with different search space. In other words, each popula-
tion searches for the corresponding decision space (under-
lined), while the other decision space (not underlined) does 
not change. After searching reaches a certain number of 
iterations, the groups exchange and share information.

2.2.2. Improved strategy of pollution sources identification 
problems

Pollution sources identification problem is an engineer-
ing problem, not a purely theoretical problem. It has the 
characteristics of itself. In a GA based on hybrid coding, 
the problem may not be prominent if there are fewer net-
work nodes. When there are more nodes, it is easy to fall 
into the local optimum, and the performance of the algo-
rithm becomes unstable. To solve these problems, this paper 
proposes different improvement strategies to guide the 
individual search according to the characteristics of pollution 
sources problems.

2.2.3. Improved proximity search strategy

In many pollution sources identification problems, the 
time and duration of pollutant injection are usually coded 
separately to form two independent variables, corresponding 
to the positions of the genes. For example: (3, 3) represents 
the start time and duration, when the location and the quality 

Pollution source identification problems

Location Time Mass

Population

T0 M0L0

T1 M1L1

Ts MsLs

T0 M0L0

T1 M1L1

Ts MsLs

T0 M0L0

T1 M1L1

Ts MsLs

 

Fig. 1. Framework of co-evolutionary population division.



127J. Gong et al. / Desalination and Water Treatment 168 (2019) 123–135

curve are also determined, an individual is identified, a pol-
lution sources event can be simulated by substituting these 
parameters into the EPANET. In these treatments, the start 
time and the duration are separated independently, without 
noticing that the two actually determine a continuous time 
series, and the quality corresponds to the time series one by 
one. With this knowledge, we can see that (2, 4) represents 
four consecutive time series of 2, 3, 4, 5, (3, 3) represents 3, 
4, 5, (5, 4) represents 5, 6, 7, 8. In fact, (2, 4) and (3, 3) are 
closer than (2, 4) and (5, 4), although the latter group has 
been consistent in the variable of duration. The more coin-
cident the time series, the smaller the difference between 
the concentration difference detected by the sensor and the 
simulative sensor.

When the start time and the duration fall into the local 
optimum, it is difficult for ordinary crossover operators 
to jump out. For example, (2, 4) is the start time and dura-
tion of a real pollution sources event, but it is very diffi-
cult to achieve (2, 4) when it is in (3, 3) local. Since falling 
into the local optimum solution usually means that most 
individuals have this value, crossover has been very difficult 
at this time, and the probability of mutation operator from 
(3, 3) to (2, 4) is very small. In this paper, a proximity search 
mechanism that can jump out of the local optimum while 
maintaining individual diversity is proposed. The start time 
and the duration are taken as a whole. In each iteration, they 
collectively determine a time series to search for the time 
series with the highest degree of coincidence. This paper 
imitates the principle of Harley coding, the searched time 
series and itself is only a period of time difference (Fig. 2).

In the above figure, it is assumed that the time inter-
val is a total of 12 h from 0 to 11, and gray area represents 
the injection of pollution sources in this period of time. 
The second line shows the time series corresponding to 
(2, 4). It may be in different directions in proximity search, 
but only differ by four-time series of a time period from 
itself, that are (3, 3), (1, 5), (2, 3), (2, 5) represented by 3, 4, 
5, 6, respectively. It randomly chooses one of the searches 
and forms a corresponding new start time and duration.

2.2.4. Improved mutation strategy

In experiments, we found that whether using surrogate 
model or not, upon the algorithm converges to the exact 
position, and upon the start time, duration and fitness value 
reach a small value, it is difficult to continue convergence, 
and the quality curve cannot be precise. After testing a 

variety of evolutionary calculations (at fixed position, start 
time and duration), we found that the fitness value of the GA 
drops very fast in the initial stage, but becomes slow or even 
remains the same in the following generations, which can-
not reach a small value. The PSO happens to be the opposite, 
the early stage changes slowly, but can reach a very small 
value. In the collaborative algorithm, since the exchange 
of information is to produce new individuals through the 
combination of gene fragments, it is a good property to 
decrease the fitness value quickly, but it is also necessary to 
achieve a small value. So, keeping the crossover algorithm of 
GA, improving the mutation strategy, in combination with 
the PSO idea, we can achieve the best individual variation. 
By adding an adaptive factor, we can ensure the diversity of 
individuals. During the operation of the algorithm, the adap-
tive factor will gradually become smaller as the algorithm 
converges, so that the range of variation can be adaptively 
adjusted.

indi
indi Bestindi

rand Maxd
i

i i
j

j j( ) = ( ) + ( )( )
± ×2

 (2)

Here ‘indi’ represents an individual, i represents the 
number of the mutation that needs to be mutated, that is, 
the dimension, ‘Bestindi’ represents the best individual in 
the ‘Pm’ population, ‘rand’ represents a random number 
between (0,1), and ‘Maxd’ represents the number of maxi-
mum spacing of all individuals in the jth dimension.

2.2.5. Improved perturbation method

The search space for some problems is very rugged and 
unsmooth in some parts, making it easy to fall into the local 
optimum in solving problems. However, under normal cir-
cumstances, the global optimal solution is also near the local 
optimal solution. This is because of the mutation points in 
the search space, making it difficult to get the global opti-
mal solution. The perturbation method slightly modifies 
the value of variables. This method can increase individual 
diversity and can effectively jump out of the local optimum 
in solving the problems with a very rough search space.

In pollution sources identification problems, especially 
in large pipe networks, it is easy to locate a good area, but 
it is also easy to fall into the local optimum. After analyz-
ing the entire network topology, it is found that its location 
is not continuous, that means the topology of other nodes 

Fig. 2. Proximity search.
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around one node is similar, but their location labels are not 
continuous (Fig. 3). In this way, when a good solution is 
found, iteration gradually converges toward this point, but 
when the location label gradually converges and maps to the 
topological structure of the pipe network, it searches toward 
other areas. So that good areas around good individuals do 
not conduct very efficient searches, resulting in easy fall-
ing into the local optimum, maintaining local optimum for 
many generations without change.

In order to solve this problem, perturbation strategy is 
added in the search of pollution sources position. In general, 
when an individual appears the same, a small perturbation 
such as ceil (Normrnd (0, 1)) is added to a certain one- 
dimensional variable. Normrnd (0, 1) means standard nor-
mal distribution, ceil means rounding. In this paper, we 
find that in the elite strategy, in case of the same number of 
individuals, the same individuals are perturbed. The per-
turbation, combined with the characteristics of pollution 
sources problem, searches the nodes with similar topolog-
ical structure in the position. The same elite individuals 
are replaced when there are better individuals (evaluation 
of evaluation function), and individuals who are different 
from the same elite individuals in the population (fitness 
values) are selected directly if there are no better individuals. 
The proposed strategy can further maintain the diversity of 
the population and largely solve the problem of falling into 
the local optimum caused by the discontinuity of the contin-
uous position labels of the topological structure in the pipe 
network.

Predictive simulation has the most direct impact on 
the evaluation of individuals, so an appropriate prediction 
model is the key to solving expensive optimization prob-
lems. The Gaussian random process [8] model is a method 

of establishing surrogate models. Gaussian random process 
simulation has fewer parameters and is easily solved by 
maximum likelihood and optimization algorithms. Gaussian 
random process is taken as a surrogate model because of 
its three characteristics. (1) Gaussian random process has 
strong ability of overcoming over-fitting; (2) the parameters 
of Gaussian random process model are limited and adjust-
able; (3) Gaussian random process model can add samples 
to update model in real time after modeling, which is more 
beneficial to improve the model accuracy.

In this paper, we build expensive optimization model by 
using the modeling method of a paper on expensive opti-
mization to be prepared. The sample used in establishing 
a Gaussian prediction model in a thesis is obtained before, 
and the sample has not changed during the entire algorithm 
running. As for the locations in the pollution sources identi-
fication problem, some of those continuous in the topology 
are not continuous on the location label, which leads to the 
unobvious position correlation. When it comes to finding 
the correlation matrix, the relevance of the position is not 
obvious or there is no rule. Therefore, when selecting the 
most recent points of the current sample and the previous 
sample as the training set of the model, the properties or 
accuracy are not greatly improved. The variables in time and 
mass remain unchanged, the relevance at this time is very 
high, if the data in the program is retained, the most recent 
points of the current data and the original sample data are 
taken as the training points to greatly improve the accuracy 
of the model. The specific approach is shown in Fig. 4:

The DB in the figure above represents the previous sam-
ple, and DBt represents the temporary data sample, which 
is used to save the data evaluated by the real evaluation 
function during the operation of the algorithm. According 

Fig. 3. A partial enlarged view of the pipe network BWSN2 [32] Solution Model of Expensive Optimization Algorithm.
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to (in a thesis) the condition of using Gaussian prediction 
model, the unqualified ones are assessed using real evalu-
ation function and the data are saved to DBt, the qualified 
ones are established with a Gaussian prediction model using 
the appropriate (nearest) data selected from the DB and DBt, 
and this model is used to evaluate the individual.

When using simulation–optimization model to solve 
pollution sources identification problems, EPANET is used 
as a simulator and optimization algorithm as an optimizer. 
Unlike the general simulation–optimization models, the 
EPANET simulator or Gaussian process surrogate model 
is used to calculate individual fitness values. The introduc-
tion of Gaussian process surrogate model in the optimiza-
tion algorithm can reduce the use of EPANET simulator 
and improve the efficiency of the algorithm. The solution 

framework based on the expensive optimization algorithm 
is shown in Fig. 5.

In the expensive optimization algorithm, Gaussian ran-
dom process modeling is adopted, collaborative algorithm 
is used as an optimization algorithm. Each individual in the 
population represents a pollution incident. The EPANET 
simulator can be used to simulate a pollution incident and 
output the actual pollutant concentration information of the 
network node. By comparing with the information actually 
detected by the sensor, the individual fitness value can be 
calculated, and also the fitness value of the individual can be 
predicted by the Gaussian process surrogate model. By rea-
sonably balancing the use of EPANET with the Gaussian 
process surrogate model, the EPANET simulator can be used 
as little as possible while guaranteeing positioning accu-
racy, reducing the time cost of the algorithm. Therefore, the 
algorithm has two main problems. One is how to build an 
appropriate Gaussian process surrogate model, and the other 
is how to balance the use of the Gaussian process surrogate 
model with the EPANET simulator.

2.2.6. Based on collaborative expensive optimization 
algorithm

Based on the classic solving process of expensive opti-
mization, Gaussian process surrogate model is introduced 
in the process of optimization to reduce the number of real 
evaluation functions. In the process of optimization, the 
strategy is constantly adjusted to balance the use of the 
Gaussian prediction model with the EPANET simulator 
so that the algorithm reduces the use of the EPANET sim-
ulator while achieving the required accuracy. According to 
the solution framework of pollution sources identification 
based on expensive optimization algorithm shown in Fig. 1, 

DB DBt

Estimate individual 
by model

Evaluate individual 
by the objective

functions

Gaussian 
prediction model

 

Fig. 4. Individual evaluation process.

Calcula�on error
Contaminant 

concentra�on of 
sensor observa�ons

Finish, save 
op�mal solu�on 

op�miza�on 
algorithm

Less than 
threshold

 Output the contaminant 
concentra�on of each node

More than 
threshold

Generate a new popula�on

Ini�alize the 
sample set input

Randomly  ini�alize 
popula�on

Using surrogate 
model?Using GP Yes Using EPANETNo

 
Fig. 5. Solution framework diagram based on expensive optimization algorithm.
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this paper proposes a collaborative expensive optimization 
algorithm, the flow chart is shown in Fig. 6.

According to the above strategy using surrogate model, 
the detailed steps of the algorithm are as follows:

Step 1: Initialize the population. In order to minimize the 
use of EPANET, population P is initialized directly 
from the sample set.

Step 2: The population P is evenly divided into three sub- 
populations, namely Pl, Pt, Pm.

Step 3: Improve roulette options. In order to make the algo-
rithm fall into the local optimum, this paper uses an 
improved roulette selection method.

Step 4: Use the following strategies for the three sub-  
 populations.

 Step 4.1:  For population Pl, the crossover operator 
adopts two-point crossover, and the muta-
tion operator adopts single-point mutation 
and Gaussian mutation.

 Step 4.2:  For population Pt, the crossover operator 
adopts two-point crossover followed by 
the neighbor search strategy presented 
above.

 Step 4.3:  For population Pm, the crossover opera-
tor uses real-numbers crossover, and the 
mutation adopts the improved mutation 
strategy presented above.

Step 5:
 Step 5.1:  The individual fitness values μ (predicted 

values) and forecast error σ of the cross-
over or mutation-producing individuals 
are predicted using a Gaussian process 
surrogate model. If the trigger coefficient 
3σ/μ < 0.2 (0.2 is obtained by experimen-
tal analysis), predicted values are used 
directly as the fitness values of new indi-
viduals, otherwise enter Step 5.2.

 Step 5.2:  Generate a probability P* randomly. If 
P* < P, P = t/x, use EPANET to calculate 
the fitness value, where t is the number of 
iterations and x is the radix, otherwise the 
individual fitness value is calculated using 
the Gaussian process surrogate model.

Step 6: After each iteration, the population is sorted by fit-
ness values. As for the first N individuals of which 
the fitness values are calculated using the Gaussian 
process surrogate model, the real model EPANET is 
used for correcting the fitness values.

Step 7: Use elitist strategy, retention strategy and elitist 
strategy for the three sub-populations, respectively. 
If the elite individuals in population Pl are the same, 
then the above-mentioned perturbation strategy is 
used, while in Pm, the disturbance strategy is used 
directly for an elite individual.

Step 8: After an integer multiple of S, the three sub-popu-
lations combine the genes of the optimal individu-
als to generate new individuals and uniformly add 
them to the three sub-populations (directly replace 
the corresponding worst individuals) Otherwise 
skip to Step 1.

Step 9: Determine whether the stop condition is satisfied. 
If the condition is satisfied, the algorithm ends; 
otherwise, skip to Step 2.

3. Results

3.1. Experimental simulation and analysis

3.1.1. Water supply network parameters and algorithm 
parameters setting

To show the necessity of the surrogate model, a large-
scale pipe network BWSN2 was used in this paper. As shown 
in Fig. 7, the pipeline network contains 12,527 nodes, 2 res-
ervoirs and 2 ponds. In the water network, 20 sensors are 
arranged {7,626, 8,912, 5,363, 6,632, 6,725, 4,889, 10,861, 2,372, 
8,820, 3,070, 6,840, 11,550, 3,430, 7,959, 6,744, 9,488, 11,330, 
7,211, 6,006, 5,890}. The total simulation time of the pipe net-
work was 48 h, the simulation hydraulic time step took 1 h, 
the water quality time step took 5 min, and the real pollution 
scene was the continuous injection of pollutants from node 
4,529 for 4 h which started 2 h after the simulation. The relevant 
parameters of the expensive optimization algorithm based on  
the Gaussian process surrogate model are shown in Table 1.

Experimental environment: the processor of the sim-
ulation machine is Intel Core i5–6500 @ 3.20 GHZ, RAM is 
8.0 GB, OS (Operating System) is Windows 7 Professional 
64-bit. The experiments in this paper are algorithmic perfor-
mance analysis, and then comparison of algorithms using 
the surrogate model and not using the surrogate model. 
The effectiveness and efficiency of the expensive optimi-
zation algorithm based on the Gaussian process surrogate 
model are verified by analyzing the number of EPANET 
evaluations and the time cost of the algorithm.

3.1.2. Algorithm performance analysis

The expensive optimization algorithm uses a surrogate 
model with little computation or time consuming to replace 
the computationally intensive real objective function. In 
this paper, Gaussian random process is used to obtain the 
approximation of the fitness value of the EPANET simu-
lator to reduce the time cost. In order to balance the accu-
racy of pollution sources identification while reducing the 
time, this paper follows the usage strategy of Gaussian 
process surrogate model and the dynamic selected sample 
of experimental operating data to update model. In this 
section, through the simulation experiment, the comparison 
between the established Gaussian process surrogate model 
and EPANET is carried out first, and then the validity of the 
collaborative expensive optimization algorithm used in this 
paper is verified through many experiments.

In the process of algorithm convergence, extensive use 
of Gaussian process surrogate model can greatly reduce the 
cost of time. Fig. 8 shows a comparison of the time required 
to predict individual fitness values using a single EPANET 
simulator and using a one-time Gaussian process surro-
gate mode. The one-time Gaussian process surrogate model 
reduces the time by approximately 20 times as compared 
with the EPANET simulator. It can be proved that the exten-
sive use of Gaussian process surrogate model can greatly 
reduce the time cost of the algorithm.
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Fig. 6. Collaborative expensive optimization algorithm.

Fig. 7. BWSN2.
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After verifying that the Gaussian process, surrogate 
model can reduce the time by theory, we adopted the appro-
priate strategy and used surrogate model reasonably. In this 
paper, we used ordinary GA and the algorithm without 
surrogate model to compare the time consumed in using 
EPANET and the running time of the algorithm under 
the same pollution incident. Then compare the number of 
EPANET uses and the time spent on the program after add-
ing the surrogate model. After 20 iterations, the number of 
EPANET uses and the time spent on using the Gaussian pro-
cess surrogate model and not using the Gaussian process 
surrogate model are shown in Figs. 9 and 10. As can be seen 
from the figure, after using the surrogate model reason-
ably, both algorithms can significantly reduce the number 
of EPANET uses and the time spent on the algorithm.

However, it is clear from the experimental results that the 
time between the two algorithms and the number of EPANET 
uses are not significantly different, and even higher in this 
paper. The main reason for this problem is that in the collabo-
rative algorithm, after a certain number of iterations, the pop-
ulation needs the exchange of information, so there will be a 
certain EPANET calling, so the time and the use of EPANET 
are higher. In case when the pollution sources can be iden-
tified, EPANET use in Gaussian process surrogate model 

greatly reduces by nearly 2/3 times, so that the algorithm 
consumes less time, greatly improving the efficiency of the 
algorithm. It further proves the efficiency of GA added with 
a surrogate model and the proposed algorithm.

In the above experiment, we only analyzed the differ-
ence of time and EPANET uses, but the goal of expensive 
optimization is to reduce the time consumption as much as 
possible while getting accurate solutions. Combined with 
the pollution sources identification problems, whether 
the algorithm can find the exact information of pollution 
sources reflects the stability of the algorithm. Evolution 
algorithms are not widely applied in industrial engineering 
mainly due to the poor stability, so the stability analysis is 
very important. Previous work has found that the general 
algorithms such as ordinary GA is more stable in small pipe 
networks, but due to the large solution space in large pipe 
networks, the algorithm is very unstable, easily falling into 
the local optimum.

This paper has done some work to avoid falling into the 
local optimum in the actual pollution sources identification 

Table 1
Algorithm parameters setting

Parameter Description Value

POP_SIZE Population size 100
NUM_ITRE Number of iterations 100
Pc Crossover probability 95%
Pm Mutation probability 70%
M Individual selected by the elite strategy 5
n Improved roulette parameter 6
N Number of updated individuals 10
S Number of iterations of information 
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problems, so as to verify its effectiveness. By comparing the 
complete algorithm of this paper, the ordinary GA with an 
expensive model, the ordinary GA and the algorithm of this 
paper without an expensive model, the results were obtained 
after 20 iterations. As shown in Table 2, as mentioned above, 
either the proposed algorithm or the GA with an expensive 
model can both effectively reduce the use of EPANET and 
reduce the time after adding an expensive model.

However, as shown in Table 3, after repeated experi-
ments, the proposed algorithm is obviously superior to the 
ordinary GA with Gaussian process surrogate model, both in 
the identification of the pollution sources and the start time 
and the duration. Combined with Table 2, compared with 
the algorithm without an expensive model, the proposed 
algorithm greatly reduces the calculation time. Comparing 
the GA with a Gaussian process surrogate model, although 
the average time increased by 6 min, the stability of the 
algorithm has been greatly improved. In pollution sources 

identification problems, the location and time are the most 
important. In a real environment, in the event of a pollu-
tion incident, an accurate location and time can help to 
effectively deal with and control the pollution. Therefore, 
the stability of the algorithm is very important. Although 
the poor stability of the algorithm may sometimes lead to 
a feasible solution with low fitness value, it is not advisable 
given its high uncertainty.

The proposed algorithm has a very small fitness value 
when getting the optimal solution but may be larger than 
that of other optimization problems. This is mainly due to 
the superposition of errors in the objective function by using 
simulation and optimization to solve the pollution sources 
identification problems, aiming for a more vivid representa-
tion of the pollution sources concentration accuracy solved 
by the proposed algorithm. By comparing the information 
obtained by the sensor of which the optimal solution is taken 
as the pollution sources and by the real sensor, the pollution 

Table 2
Experimental results comparison

Time costs Number of  
EPANET calls

Optimal solution  
fitness

Collaborative algorithm  
 (CA) + GP

94 min 3,681 times 9.22

GA + GAM 88 min 3,550 times 17.81
CA 3,325 min 16,716 times 5.1
GA 319 min 16,555 times 7.8

Table 3
Experimental results

Trials CA + GP GA + GP

Location + 222222222 Start Time Duration Location Start Time Duration

1 4,529 2 4 4,529 3 3
2 4,529 2 4 4,531 2 4
3 4,529 2 4 4,531 3 3
4 4,587 1 5 10,386 3 5
5 4,529 2 4 4,531 2 5
6 4,529 2 4 4,529 2 4
7 4,529 2 4 4,529 2 4
8 4,529 2 4 4,739 1 5
9 5,116 4 4 4,529 2 4
10 4,529 2 4 4,529 2 4
11 4,529 2 4 4,529 2 4
12 4,529 2 4 4,531 0 5
13 4,531 2 4 4,529 1 4
14 4,529 2 4 4,587 3 2
15 4,529 2 4 4,529 2 4
16 4,529 2 4 4,529 1 5
17 4,529 2 4 4,529 1 4
18 4,529 2 4 4,529 2 4
19 4,529 2 4 8,139 1 4
20 4,529 2 4 4,529 1 5
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sources information obtained from the proposed algorithm 
is further verified. As shown in Fig. 11, which is a concen-
tration curve of one of the sensors 7,626 under the EPANET 
simulation, it is seen that the curve of the concentration 
information of pollutant detected by the sensor 7,626 cor-
responding to the optimum solution is consistent. It shows 
that the proposed algorithm can effectively solve the feasi-
ble solutions and basically match with the actual pollution 
sources information.

4. Conclusions

Pollution sources identification problem is an interdis-
ciplinary problem in the field of environmental science 
and computational science. In this paper, pollution sources 
identification problems are transformed into function opti-
mization problems by using simulation–optimization model. 
According to the expensiveness of pollution sources iden-
tification problems, these problems are transformed into 
expensive optimization problems, which can easily fall into 
the local optimum when the numbers are not actually num-
bered in spatially adjacent positions and are not processed 
in time. To solve this problem, based on the collaborative 
expensive optimization algorithm, according to the charac-
teristics of water supply networks and different variables, 
this paper proposes a strategy that is more suitable for vari-
ables for each variable so as to guide the search direction of 
the algorithm. The algorithm uses as many Gaussian process 
surrogate models as possible while ensuring the positioning 
accuracy. Finally, the simulation experiment is conducted 
to verify the effectiveness, efficiency and stability of the 
proposed algorithm.

In the study of pollution sources identification prob-
lems, when the urban pipeline network nodes exceed 1,000 
and the water requirement of users’ changes in real time, 
the problem can be abstracted as an optimization problem 
of dynamic, expensive and multimodal functions. Therefore, 
it is necessary to further propose a solution to the dynamic 
multimodal expensive optimization problems, which is also 

the follow-up research work of this paper. Considering the 
importance of location for pollution sources identification 
problems, changing the method of evaluation instead of just 
by the sum of squares of errors requires further consideration 
in the future.
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