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a b s t r a c t
The aim of this study was to apply artificial intelligence (AI) based and linear conventional tech-
niques for monthly precipitation modeling in Famagusta (a coastal) station and Nicosia (an inland) 
station of northern Cyprus. To do so, adaptive neuro fuzzy inference system (ANFIS, as a hybrid 
technique), support vector regression (as a new AI technique) and multiple linear regression 
(MLR, as conventional regression technique) were applied in two scenarios. Scenario 1 involved 
the use of six meteorological parameters as inputs to develop four models from each technique 
using different input combinations, while Scenario 2 employed the use of only precipitation data at 
several time lags up to 12 months for the modeling. The results showed that better prediction could 
be achieved in inland area due to complex and irregular behavior of precipitation in the coastal 
region. The results also demonstrated that ANFIS models have better performance than models 
developed by other applied techniques. Scenario 1 models were more efficient and reliable and 
averagely increased prediction of Scenario 2 models up to 13% for Famagusta station and 18% for 
Nicosia station in the validation phase. The general results of the study implied that where other 
meteorological data are not available, precipitation data at previous time steps could sufficiently 
model monthly precipitation in the study stations.

Keywords:  Adaptive neuro fuzzy inference system; Meteorological parameters; Precipitation modeling; 
Support vector regression

1. Introduction

Being the most significant element of hydrologic water 
cycle, and for planning and management of hydraulic struc-
tures, precipitation plays a vital role and its accurate pre-
diction is of paramount importance. Moreover, due to the 
complexity, stochastic and nonlinear nature of precipitation 
time series, the task of its prediction is considerably difficult. 

Generally, prediction models for hydro-climatic para-
meters (such as precipitation) are categorized into two; black 
box and physically based models. Physical rules are applied 

for physically based models to properly model all physical 
processes that are involved in precipitation procedure. Black 
box models, on the other hand, utilize observed (historical) 
data to perform further estimations. Computational intelli-
gence and statistical approaches are the basis upon which 
such black box models are developed. Although for the anal-
ysis of actual physics of a phenomenon, conceptual models 
are dependable methods, but they have some restrictions 
including data inadequacy for modeling, time consuming, 
inaccurate results and complexity. Therefore, when predic-
tions are more of concern than physical realization, black 



339J. Abdullahi et al. / Desalination and Water Treatment 177 (2020) 338–349

box models application could be more useful [1]. Multiple 
linear regression (MLR) is a conventional method for mod-
eling linear relationship between one or more independent 
and dependent variables [2]. Toward modeling processes, 
these kind of linear models basically lose their merit in many 
areas that are subjected with nonlinearity, dynamism and 
high complexity in both temporal and spatial scales. In recent 
time, methods of artificial intelligence (AI) (such as black box 
methods) showed great accuracy in modeling the dynamic 
precipitation nature despite the presence of data irregular-
ity, uncertainty and nonlinearity. Comparative researches 
have shown that application of AI models lead to more 
efficient and reliable results than physically based models for 
precipitation predictions [3]. 

Among AI methods, adaptive neuro fuzzy inference 
system (ANFIS) is a robust AI model for precipitation pre-
dictions, which has both the learning capability of artificial 
neural network (ANN) and knowledge representation of 
fuzzy logic. Dastorani et al. [4] applied ANFIS and ANN to 
model precipitation in the hyper arid climate of Yazd sta-
tion, Iran which has highly variable and low annual rainfall. 
Yaseen et al. [5] applied and compared the results of ANFIS 
with a hybrid ANFIS and firefly optimization algorithm 
(ANFIS-FFA) for monthly rainfall forecast with one-month 
lead-time. Apart from ANN and ANFIS, a recent AI model, 
which was developed on the concept of support vector 
machine (SVM), is support vector regression (SVR). It is an 
alternative to ANN and is one of the most useful predicting 
methods. Mehr et al. [6], and Kisi and Sanikhani [7] applied 
soft computing methods including SVR, ANFIS and ANN 
for the prediction of long-term monthly precipitation with-
out climate data. Nourani et al. [1] employed least square 
support vector machine, ANFIS and ANN to predict precipi-
tation in seven stations located in northern Cyprus (NC).

Despite the significance of precipitation in the hydro-
logic water cycle and its importance in the planning and 
management of hydraulic structures, studies (on precipi-
tation) using meteorological parameters, which have pro-
found effect on precipitation, are missing in literature for 
this study region. In addition, recent studies have shown 
that on average, precipitation trend decreases whereas 
annual temperature increases in the NC [8,9]. These empha-
sized the need for monthly precipitation modeling study 
with the use of meteorological parameters. Hence, the aim 
of this study was to evaluate the performances of ANFIS, 
SVR and MLR techniques in modeling precipitation in 
Famagusta and Nicosia stations of NC. This was done in 
two scenarios: (i) Scenario 1 employed the use of different 
input combinations of meteorological parameters including 
maximum temperature (Tmax), minimum temperature (Tmin), 
mean temperature (Tmean), relative humidity (RH), wind 
speed (U2) and surface pressure (SP) for the precipitation 
prediction. (ii) In Scenario 2, precipitation data at previous 
time steps up to 12 months lag time (to cover seasonality) 
were used as inputs to the applied techniques.

2. Materials and methods

2.1. Study location and data

Cyprus is the eastern Mediterranean’s third largest 
island and its climate is typically Mediterranean with mild 

wet winters and hot dry summers, rainfall occurrence 
mostly is between November and March. Average tempera-
ture in NC falls between 5°C and 15°C in the first month of 
the year (January) and rises higher in July. Recent research 
showed that through evapotranspiration, about 80% of 
rainfall water returns to the atmosphere [10]. Data from 
Famagusta and Nicosia stations were obtained and used 
in this study (Fig. 1). The Famagusta climate is classified as 
temperate and warm. It usually constitutes a yearly average 
rainfall of about 407 mm/year with around 19.3°C aver-
age temperature. Being an inland city, the Mediterranean 
Sea effect is less in Nicosia compared with the other cities in 
coastal areas. Hence, Nicosia experiences colder winters and 
hotter summers than the coastal cities. Also there is large 
difference between day maximum and night minimum 
temperatures. July and August are the two hottest months 
and the daytime temperature difference between other cit-
ies along the coastline and Nicosia is about 4°C–7°C. For 
January and February (the coldest months), the difference 
in daytime temperature of Nicosia is 2°C–3°C less than on 
the coast [2]. Table 1 gives descriptions of the data used in 
the study.

As seen in Table 1, in both Famagusta and Nicosia 
stations, the amount of precipitation can be as low as 
0 mm/month which indicates month of no precipitation, 
but despite being Mediterranean stations, Famagusta has 
the highest maximum precipitation (245.73 mm/month) 
than Nicosia (217.80 mm/month) station. This is because, 
Famagusta is a coastal station surrounded by Mediterranean 
Sea and the presence of the Sea increases the evaporation 
bodies of the station, thus results in higher evaporation 
and subsequently higher precipitation due to cyclic nature 
of hydrologic water cycle. Fig. 1 shows the location of the 
study stations.

For the purpose of this study, 36 years monthly data 
including Tmax, Tmin, Tmean, RH, U2, SP and P numbering 432 
from January, 1983 to December, 2018 for Famagusta and 
Nicosia stations of NC were obtained and used for the 
precipitation modeling. Prior to the commencement of the 
modeling, the monthly average precipitation data were 
normalized by the equation as follows [1]:
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where Pn is the normalized P(t) data, which has values between 
0 and 1 (0 ≤ Pn ≤ 1), P(t), Pmin(t) and Pmax(t) are the observed data, 
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To assess the efficiency and determine the performance 
of the proposed models, this study endorsed research con-
ducted by Legates and McCabe Jr. [11], which depicted that 
Nash–Sutcliffe efficiency or determination coefficient (DC) 
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DC = −
−( )
−( )

=

=

∑

∑
1

2

1
2

1

P P

P P

i i
i

N

i
i

N



 (2)



J. Abdullahi et al. / Desalination and Water Treatment 177 (2020) 338–349340

RMSE =
−( )

=
∑ P P

N

i i
i

N


2

1  (3)

where N, Pi, P‾, and P�i are, respectively, the number of obser-
vations, observed data, mean of the observed values, and 
predicted values.

2.2. Validation approach

In this study, a stratified k-fold cross-validation pro-
cedure was applied in order to validate the models devel-
oped by the used modeling techniques. To implement the 
k-fold cross-validation, the data samples from Famagusta 
and Nicosia stations were divided randomly into k = 4 
subsamples as demonstrated by Fig. 2. Total sample size 

Fig. 1. Location of the study stations.

Table 1
Descriptive statistics of the study data

Station Parameter Minimum Maximum Mean Std. deviation

Famagusta Maximum temperature (Tmax), °C 12.13 34.11 23.63 6.35
Minimum temperature (Tmin), °C 9.03 28.58 19.08 5.46
Mean temperature (Tmean), °C 10.62 31.23 21.28 5.91
Relative humidity (RH), % 53.18 75.51 63.90 5.20
Wind speed (U2), m/s 1.93 4.95 3.02 0.58
Surface pressure (SP), kpa 99.88 101.70 100.75 0.44

 Precipitation (P), mm/month 0 245.73 25.16 31.69
Nicosia Maximum temperature (Tmax), °C 11.29 34.76 23.43 6.71

Minimum temperature (Tmin), °C 7.41 27.65 17.76 5.60
Mean temperature (Tmean), °C 9.40 30.96 20.42 6.14
Relative humidity (RH), % 51.14 77.85 64.51 6.26
Wind speed (U2), m/s 2.03 5.03 3.27 0.47
Surface pressure (SP), kpa 98.77 100.50 99.58 0.41
Precipitation (P), mm/month 0 217.80 28.55 34.67
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was divided by k (4) folds to obtain each random subsample. 
Single subsample was used to test the model while k–1 
(4–1) random subsamples were used for the model training. 
The process was repeated four times (the number of k-fold 
subsamples) for different k–1 training subsamples and dif-
ferent single test (validation) subsamples. The advantage 
of k-fold cross-validation method is that the validation is 
carried out for each observation exactly once and both the 
training and validation are carried out using the entire 
observations [2]. The schematic illustration of the four-fold 
cross-validation used in this study is shown in Fig. 2.

2.3. Proposed methodology

In this study, ANFIS, SVR and MLR models were 
developed, trained and validated separately for monthly 
precipitation modeling using several meteorological para-
meters as inputs. The proposed approaches were applied 
via Scenarios 1 and 2.

2.3.1. Scenario 1

This scenario involved the use of meteorological vari-
ables as inputs to AI and MLR models for the precipitation 
modeling. Four models were developed, expressed as:

P f T T T R U St
i i i i

H
i i

p
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i implies the station name (Famagusta or Nicosia) and t is 
observation time, P, Tmax, Tmin, Tmean, RH, U2, Sp were defined 
in Table 1.

2.3.2. Scenario 2

Instead of using the meteorological variables as inputs, 
precipitation’s own data were used at several time lags 
(precipitation at previous time steps). Four models were 
developed from this scenario, expressed as:
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precipitation data at previous time steps t–1, t–2, t–3, t–4, t–5, 
t–6 and t–12 (or 1, 2, 3, 4, 5, 6 and 12 months ago).

The selection of Scenario 2 for the precipitation modeling 
was due to the following reasons:

• In modeling precipitation, previous studies such as 
Nourani et al. [1] and Yaseen et al. [5] have shown that 
as an auto regression (Markovian) process, precipita-
tion values are more correlated to P(t) at prior time steps 
(P(t–1), P(t–2) and so on). For this purpose, as inputs for AI 
models, selection of previous time steps of precipitation 
values is feasible.

• Due to seasonality of the precipitation phenomenon, 
P(t–12) was also included as input. This is because of the 
strong bond (in terms of similarity) that exists between 
precipitation level at a month of previous year and pre-
cipitation values of the same month at current year.

Fig. 3 shows the proposed methodology of the study.

2.4. Adaptive neuro-fuzzy inference system

ANFIS is a robust hybrid system created by the combina-
tion of fuzzy system and ANN, which is capable of solving 
complex nature of relationship [12]. ANFIS is a multi-layer 
feed-forward neural network that has the ability of inte-
grating fuzzy logic algorithms and the knowledge of ANN, 
which maps the set of inputs with the output [13]. ANFIS as 
AI-based model employs hybrid training algorithms which 
consist of a combination of back propagation and least 
squares method [14]. 

The developed ANFIS consists of two inputs of P(t–1), 
P(t–12) and one output of P(t) as shown in Fig. 4. The cur-
rent research employed Takagi –Sugeno-Kang (TSK) fuzzy 
inference engine for fuzzy operation among different 
fuzzy inference systems which can be used. The operation 
of ANFIS to create target function with 2 input vectors of 
P(t–1), P(t–12) and first order TSK applied to two fuzzy rules 
expressed as [15]:

Rule (1): if µ(P(t–1)) is A1 and µ(P(t–12)) is B1 then f1 = p
1(P(t–1)) + t1(P(t–12)) + r1

Rule (2): if µ(P(t–1)) is A2 and µ(P(t–12)) is B2 then f1 = p
2(P(t–1)) + t2(P(t–12)) + r2

A1, A2, and B1, B2 are membership functions parameters, 
for inputs P(t–1) and P(t–12) and p1, t1, r1 and p2, t2, r2 are 
outlet functions’ parameters, the formulation and structure 
of ANFIS followed a five-layer neural network arrangement. 
The general ANFIS structure is shown in Fig. 4.

2.5. Support vector regression

The concept of SVM learning was introduced by Cortes 
and Vapnik [16]. It presents a satisfactory approach to the 
problems of classification, pattern recognition, regression 
and prediction. SVM-based methods such as SVR is dif-
ferent from many other black box methods, in such a way 
that instead of minimizing the error between predicted 
and observed values, the operational risk is considered 
as the objective function to be minimized. A linear regres-
sion is fitted first on the data in SVR, and then to catch the 

Fig. 2. Schematic illustration of the applied k-fold cross-validation.
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nonlinear data pattern, the output goes through a nonlinear 
kernel. 

Given a set of training data, {(xi, di}di is the actual value, xi 
is the input vector and N is the data patterns total number), 
the general SVR function is [17] as follows:

y f x w x bi= ( ) = ( ) +ϕ  (6)

where φ(xi) non-linearly mapped from input vector x which 
implies feature spaces [18]. Minimization of the objec-
tive function and assigning positive values for the slack 

parameters of ξ and ξ* may determine regression parameters 
of b and w [17].
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Fig. 3. Proposed methodology of the study.

Fig. 4. General ANFIS structure.
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where 
1
2

2
w  is the weights vector norm and the trade-off 

between the regularized term and the empirical error is 
determined by C referred to as the regularized constant. ε is 
equivalent to the approximation accuracy placed within the 
training data points and is called the tube size. By defining 
Lagrange multipliers αi and αi*, optimization problem men-
tioned can be changed to the dual quadratic optimization 
problem. After solving the quadratic optimization problem, 
vector w in Eq. (9) can be computed as [17]:
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So, SVR can be expressed in the final form as [17]:
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b is bias term and non-linear mapping into feature space 
is performed by k(xi, xj) which is the kernel function. Gaussian 
Radial Basis Function (RBF) kernel is one of the commonly 
used kernel function as [19]:

k x x x x1 2 1 2

2
, exp( ) = − −( )γ  (11)

where γ is the kernel parameter. Fig. 5 shows the SVR 
structure.

2.6. Multiple linear regression

MLR is a famous method of modeling mathematically, 
the linear relationship between one or more independent 
variables and dependent variable. In general, the dependent 
variable y, and n regressor variables may be related by [20]:

y b b x b x b x b xi i= + + + + + +0 1 1 2 2 3 3 ... ξ  (12)

where xi is the value of the ith predictor, b0 is the regression 
constant, and bi is the coefficient of the ith predictor and ξ is 
the error term.

3. Results and discussion

As the study was conducted in Scenarios 1 and 2, the 
results and discussion section was provided accordingly.

3.1. Results of Scenario 1

Dominant inputs selection is among the difficult and most 
important aspects of modeling using AI-based techniques. To 
achieve high performance, the modeling should involve the 
use of most influential variables as inputs, while less effec-
tive and unnecessary variables should be discarded. In some 
previous studies regarding AI-based modeling, correlation 
coefficient between potential inputs and target has been 
employed to select more effective inputs; but as pinpointed 
by Nourani et al. [21], in a non-linear process, in spite of weak 
linear correlation, it is possible to have a strong non-linear 
correlation between the parameters. In view of this, to iden-
tify the key input parameters, a single-input single-output 
ANFIS-based analysis was carried out for the precipitation 
modeling over the selected stations. The results of dominant 
inputs selection were ranked from the most influential to 
least effective parameter and are given in Table 2.

As seen in Table 2 temperatures (Tmax, Tmin and Tmean) have 
a major role to play in modeling precipitation, having ranked 
1st, 2nd and 6th for Famagusta station and 2nd, 4th and 
3rd most influential parameters for Nicosia station. This is 
because Mediterranean climate is characterized by high tem-
perature (Table 1) which results in higher evapotranspiration 
that subsequently lead to precipitation. This is in conformity 
to the study by Payab and Türker [8] whereby between 1900 
and 2014, statistical analysis showed an average decreasing 
trend of monthly precipitation and an increased tempera-
ture, which elaborates the effectiveness and correlation that 
exist between temperature and precipitation. RH along side 
Tmax were found to be the most dominants for Nicosia sta-
tions but RH was the 5th for Famagusta station. The best five 
most dominant parameters were used for creation of four 
models for each technique using different input combina-
tions from minimum (two) to maximum (five) inputs. 

Based upon the obtained results by dominant inputs 
selection, the results of the monthly precipitation estima-
tion by ANFIS, SVR and MLR techniques are presented for 
Famagusta and Nicosia stations of NC. 

Sugeno type fuzzy inference algorithm was applied in 
this study for ANFIS models, where the membership func-
tion parameters were calibrated by a set of given input– 
output data via hybrid optimization algorithm. To achieve 
the best ANFIS construction, formulation of the ANFIS struc-
tures was done through trial and error procedure. Across 
the two stations for the monthly precipitation modeling, 
Gaussian-shaped and Triangular membership functions 
(MFs) were found to be sufficient, while for optimum perfor-
mance, the number of MFs was determined by examining the 
modification of training epoch.

For SVR models, the models were created using RBF 
kernel for the two stations under study. For RBF kernel, the Fig. 5. Structure of SVR.
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tuning parameters are fewer than two sigmoid and poly-
nomial kernels. In addition, the RBF kernel shows better 
performance in modeling using SVR technique considering 
smoothness assumptions [2]. For reliability and efficient 
precipitation modeling in each station, the RBF kernel’s 
parameters in SVR were tuned. Finally, MLR technique that 
demonstrates linearly the relationship between independent 
and dependent parameters was used in this study as well.

Table 3 presents the results of the ANFIS, SVR and MLR 
models for Scenario 1. It is worth explaining that the results 
are given for the best output models only. MF-x for ANFIS 
structure, stand for type of membership function used and 
number of membership functions. For SVR, RBF is the tun-
ing parameter used in the SVR construction. The MLR 
structure x-y represents inputs and output parameters used, 
respectively.

As seen in Table 3, different techniques produced dif-
ferent kind of results at different modeling steps. It can also 
be seen that in both Famagusta and Nicosia stations, all the 
applied techniques could produce reliable prediction of pre-
cipitation, but models developed by AI techniques surpassed 
those developed by MLR technique in term of higher DC 
and lower RMSE. This could be owing to the ability of the AI 
techniques in dealing with nonlinear and uncertain behavior 
of precipitation, whereas MLR cannot cope with nonlinear 
aspect of precipitation. However, among the applied model-
ing techniques, ANFIS has the best performance which could 
be due to advantage it has of utilizing both learning algo-
rithm of fuzzy inference system and generalization capability 
of neural network in a unique framework.

Table 3 also depicts the results of four models developed 
by AI and MLR techniques with different input combinations. 
The results show that in both stations, the performances of the 
developed models increase with increase in number of inputs 
(except in few occasions such as for Famagusta whereby DCs 
for M1 and M2 are 0.5532 and 0.5527 by ANFIS technique in 
the validation phase), but increase in inputs lead to model 
complication and is time consuming. This could be due to the 
following reasons:

• Precipitation is uncertain, complex and a nonlinear pro-
cess that relies on several climatological factors; as a 
results, models with few meteorological parameters may 
not capture the desired results as those developed by 
many parameters.

• Presence of U2 from M2 to M4 for Famagusta station may 
have profound effect on the precipitation modeling. As 

reported by Nourani et al. [22], U2 might be poor in sen-
sitivity analysis (dominant inputs selection) but its pres-
ence with combination of meteorological parameters may 
increase prediction of hydro-climatological modeling.

Comparison of Table 3 between Famagusta and Nicosia 
station shows that, with the exception of M1, almost all the 
applied models provided superior results in Nicosia than in 
Famagusta station. The better prediction of M1 in coastal sta-
tion is due to the type of input parameters used. Although, 
RH was found to be more correlated with precipitation in the 
station compared with Tmean and Tmin according to the given 
results by dominant inputs analysis (Table 2), but previous 
studies (including the one by Payab and Türker [9]) show 
that for the NC, trends of precipitation and temperature are 
of strong inverse agreement, with the former decreasing 
while the latter increasing. This clarifies that models devel-
oped by using Tmax and Tmin could be more predictive than 
the ones based on RH and Tmax inputs. On the other hand, 
the heat capacity of soil for coastal station is lower than that 
of inland station. Signifying that the land cools faster and 
heats faster while in contrast, the ocean heats up and cools 
down relatively slow. The uncertain cooling and heating 
behavior of the seacoast makes precipitation process difficult 
to be predicted by the applied techniques, thus, the models 
predicted monthly precipitation better in inland station than 
in coastal station.

The variations of performance of the best model for each 
technique in the validation phase of Famagusta station are 
given in Fig. 6 in form of time series and scatter plots.

3.2. Results of Scenario 2

In this subsection of the study, all the modeling proce-
dures and number of models developed are same as in the 
case of Scenario 1, but precipitation data at previous time 
steps were used as inputs to the applied techniques. Table 4 
shows the results of Scenario 2 precipitation modeling.

As seen in Table 4, similar to results of Scenario 1, models 
produced by ANFIS have better reliability than those by SVR 
and MLR techniques. In contrast to Scenario 1, increase in 
number of inputs does not necessitate increase in models per-
formance. Although it is obvious from Table 4 that M4 (with 
5 inputs) provided the best performance across the model-
ing phases in both stations, M1 (with two inputs) performed 
better than M2 and M3 (which have three and four inputs). 
This implies that Markovian process is in strong agreement 

Table 2
Results of dominant inputs selection

Parameter

Famagusta Nicosia

Training Validation Overall Training Validation Overall

Tmax 1 1 1 2 1 2
Tmin 2 2 2 4 4 4
Tmean 6 6 6 3 3 3
RH 4 5 5 1 2 1
U2 3 3 3 6 6 6
SP 5 4 4 5 5 5
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Table 3
Results of Scenario 1

Station Technique Model Inputs Structure Training Validation

DC RMSEa DC RMSEa

Famagusta ANFIS M1 Tmax, Tmin Gau-2 0.6418 0.0769 0.5532 0.0862
M2 Tmax, Tmin, U2 Tri-3 0.6398 0.0772 0.5527 0.0862
M3 Tmax, Tmin, U2, PS Tri-4 0.7886 0.05927 0.7193 0.0681

 M4 Tmax, Tmin, U2, PS, RH Gau-5 0.8802 0.0446 0.8143 0.0554
SVR M1 Tmax, Tmin RBF 0.5628 0.085 0.5152 0.0898

M2 Tmax, Tmin, U2 RBF 0.5682 0.0845 0.5245 0.0889
M3 Tmax, Tmin, U2, PS RBF 0.6052 0.0807 0.5801 0.0835

 M4 Tmax, Tmin, U2, PS, RH RBF 0.6047 0.0808 0.581 0.0832
MLR M1 Tmax, Tmin 2–1 0.5478 0.0863 0.5088 0.0903

M2 Tmax, Tmin, U2 3–1 0.5521 0.086 0.5213 0.0892
M3 Tmax, Tmin, U2, PS 4–1 0.5818 0.0834 0.5788 0.0836
M4 Tmax, Tmin, U2, PS, RH 5–1 0.586 0.0829 0.5796 0.0835

Nicosia ANFIS M1 RH, Tmax Tri-2 0.5262 0.1089 0.5194 0.1133
M2 RH, Tmax, Tmean Tri-3 0.7631 0.0801 0.7165 0.0836
M3 RH, Tmax, Tmean, Tmin Gau-4 0.7669 0.0794 0.7519 0.0782
M4 RH, Tmax, Tmean, Tmin, PS Gau-4 0.8675 0.0571 0.8106 0.0716

SVR M1 RH, Tmax RBF 0.4984 0.1112 0.4856 0.118
M2 RH, Tmax, Tmean RBF 0.6485 0.0976 0.6324 0.0952
M3 RH, Tmax, Tmean, Tmin RBF 0.6784 0.0933 0.6516 0.0927
M4 RH, Tmax, Tmean, Tmin, PS RBF 0.6815 0.0929 0.6725 0.0899

MLR M1 RH, Tmax 2–1 0.4766 0.1136 0.4699 0.1198
M2 RH, Tmax, Tmean 3–1 0.5712 0.1028 0.5661 0.1084
M3 RH, Tmax, Tmean, Tmin 4–1 0.6034 0.0989 0.6001 0.1041
M4 RH, Tmax, Tmean, Tmin, PS 5–1 0.6477 0.0932 0.6184 0.1016

RMSEa: Since the data were normalized, RMSE has no unit

Fig. 6. Best performance models from each technique in the validation phase of Famagusta station in form of (a) time series and (b) 
scatter plots.



J. Abdullahi et al. / Desalination and Water Treatment 177 (2020) 338–349346

Table 4
Results of Scenario 2

Station Technique Model Inputs Structure Training Validation

DC RMSEa DC RMSEa

Famagusta ANFIS M1 P(t–1), P(t–12) Tri-2 0.5893 0.0824 0.5428 0.0872
M2 P(t–1), P(t–3), P(t–12) Gau-3 0.5478 0.0864 0.5041 0.0908
M3 P(t–1), P(t–3), P(t–6), P(t–12) Tri-4 0.5162 0.0894 0.4666 0.0941
M4 P(t–1), P(t–2), P(t–3), P(t–6), P(t–12) Gau-5 0.6512 0.0759 0.5982 0.0817

SVR M1 P(t–1), P(t–12) RBF 0.5239 0.0889 0.5087 0.0904
M2 P(t–1), P(t–3), P(t–12) RBF 0.5137 0.0896 0.4856 0.0925
M3 P(t–1), P(t–3), P(t–6), P(t–12) RBF 0.4477 0.0955 0.428 0.0975
M4 P(t–1), P(t–2), P(t–3), P(t–6), P(t–12) RBF 0.5233 0.08876 0.5109 0.0899

MLR M1 P(t–1), P(t–12) 2–1 0.5118 0.0898 0.4886 0.0922
M2 P(t–1), P(t–3), P(t–12) 3–1 0.495 0.0914 0.4626 0.0945
M3 P(t–1), P(t–3), P(t–6), P(t–12) 4–1 0.4457 0.0957 0.4412 0.0964
M4 P(t–1), P(t–2), P(t–3), P(t–6), P(t–12) 5–1 0.5153 0.0898 0.4899 0.09206

Nicosia ANFIS M1 P(t–1), P(t–12) Gau-2 0.5556 0.1097 0.5548 0.1048
M2 P(t–1), P(t–3), P(t–12) Gau-3 0.5578 0.1044 0.5255 0.1133
M3 P(t–1), P(t–3), P(t–6), P(t–12) Tri-4 0.4987 0.1112 0.483 0.1183
M4 P(t–1), P(t–2), P(t–3), P(t–6), P(t–12) Tri-4 0.6641 0.0954 0.6259 0.096

SVR M1 P(t–1), P(t–12) RBF 0.4822 0.113 0.4554 0.1214
M2 P(t–1), P(t–3), P(t–12) RBF 0.5404 0.1064 0.4848 0.1181
M3 P(t–1), P(t–3), P(t–6), P(t–12) RBF 0.4584 0.1156 0.4126 0.1261
M4 P(t–1), P(t–2), P(t–3), P(t–6), P(t–12) RBF 0.5049 0.1105 0.4748 0.1192

MLR M1 P(t–1), P(t–12) 2–1 0.4589 0.121 0.4416 0.1173
M2 P(t–1), P(t–3), P(t–12) 3–1 0.4886 0.1123 0.443 0.1128
M3 P(t–1), P(t–3), P(t–6), P(t–12) 4–1 0.4386 0.1177 0.4063 0.1268
M4 P(t–1), P(t–2), P(t–3), P(t–6), P(t–12) 5–1 0.4745 0.1138 0.4707 0.1197

RMSEa: Since the data were normalized, RMSE has no unit.

Fig. 7. Best performance models from each technique in the validation phase of Nicosia station in form of (a) time series and 
(b) scatter plots.
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with seasonality of precipitation. For the case of M1 which 
uses P(t–1) and P(t–12) as inputs, for 12 months lags, there exists 
a strong bond between precipitation values of the current 
month and that of the same month in previous year [1]. 
Moreover, for the case of 1-month lag, higher correlation 
does exist between current and previous month precipita-
tion. With inclusion of 3 and 6 months lags, the seasonality 
reduces thereby weakening the Markovian (autoregressive) 
characteristics of precipitation, which consequently results 
in lower prediction of precipitation.

As seen in Table 4, the results of the models developed 
by ANFIS technique in Nicosia station are better than in 
Famagusta station. This could be because, in contrast to 
Famagusta station that is located in coastal area, Nicosia 
station is at central and higher parts of the island. However, 
the irregular variations of the seacoast increase complex-
ity of precipitation process, thereby making its prediction 
difficult.

Comparing Scenarios 1 and 2 (Tables 3 and 4), it can 
be deduced that results of scenario 1 are better and more 

reliable than results obtained by Scenario 2. This is because 
independent variables used as inputs for Scenario 1 are 
important elements in hydrologic water cycle and precipi-
tation being the most significant element could be predicted 
more efficiently using the factors that influence water cycle. 
Scenario 1 improved prediction of Scenario 2 models in the 
validation phase up to 22%, 7% and 9% for Famagusta sta-
tion, and 18%, 20% and 15% for Nicosia station for ANFIS, 
SVR and MLR techniques, respectively. However, in spite of 
less reliability of Scenario 2 with respect to Scenario 1, sig-
nificant performance was also achieved by Scenario 2 mod-
els, thus, where meteorological parameters are not available, 
precipitation data at previous time steps could be sufficient 
in modeling precipitation in semiarid Mediterranean climate 
of Famagusta and Nicosia stations of NC. The variations of 
performance of the best model vs. observed values for each 
technique in the validation phase of Nicosia station are given 
in Fig. 7 in form of time series and scatter plots.

However, to further assess the performance of the indi-
vidual models for both scenarios, Taylor diagrams were 

 

Fig. 8. Taylor diagrams depicting the performance of the applied models in both training and validation phases for the first scenario 
for (a) Famagusta station and (b) Nicosia station.
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plotted. A Taylor diagram summarizes the overall perfor-
mance of the models by taking into account the variability, 
pattern correlations, as well as the RMSE between observed 
data and predictions by the models [6]. In the diagram, the 
similarity between observed records and predictive models 
is determined in terms of standard deviation (SD) and cor-
relation coefficient (CC), while RMSE is centered as a mea-
sure of distance from observed point (reference point) [23]. 
In general, if the SD of the observed values surpasses the SD 
of the predicted values, then underestimation occurs. On the 
other hand, if the SD of the observed values is lower than the 
SD of the predicted values, then overestimation occurs [24]. 
Fig. 8 shows the Taylor diagrams in the training and valida-
tion phases of both coastal and inland stations for Scenario 2 
for the best models in this study.

Different performances of the models could be seen as 
demonstrated by Fig. 8. For both Famagusta and Nicosia sta-
tions, ANFIS has SD more close to the SD of the observed 
values and less RMSE which implied better befitting char-
acteristics. Fig. 9 shows Taylor diagrams in the training and 

validation phases of both coastal and inland stations for 
Scenario 2 for the best models in this study.

As could be seen in the Taylor diagrams of the second 
scenario (Fig. 9), there is a wide margin between the SD of the 
predicted values and SD of the observed values and hence, 
larger RMSE. This further reaffirmed the earlier presented 
results that showed higher accuracy of Scenario 1 in compar-
ison with Scenario 2. Apart from SD and RMSE, the accuracy 
of the models could be ascertained based on the CC values 
depicted by the Taylor diagrams. For instance, for Famagusta 
station in the validation phase, the CC value for ANFIS was 
obtained as 0.9024 for Scenario 1, in comparison with 0.7734 
for Scenario 2.

4. Conclusion

In the current study, two AI based and MLR techniques 
were applied for monthly prediction of precipitation in 
Famagusta station and Nicosia station of NC. Two scenar-
ios were involved for the modeling purpose. Scenario 1 

Fig. 9. Taylor diagrams depicting the performance of the applied models in both training and validation phases for the second 
scenario for (a) Famagusta station and (b) Nicosia station.
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evaluated the effectiveness of the applied techniques for the 
precipitation modeling involving meteorological parameters 
as inputs using several inputs combination. Before the com-
mencement of the modeling, inputs selection approach was 
applied to determine dominant parameters for more effective 
modeling. Scenario 2 involved the use of precipitation data 
at several time lags using four different inputs combination.

The obtained results showed that maximum tempera-
ture is the most dominant among the meteorological param-
eters due to the location of the study stations to semiarid 
Mediterranean climate. The results also showed that AI based 
were superior to MLR-based models, but ANFIS was found 
to have better performance due to its unique framework of 
combining neural network and fuzzy inference system gen-
eralization capabilities. Scenario 1 models were found to 
be more efficient than Scenario 2. The overall results of the 
study demonstrated that the monthly precipitation could be 
predicted effectively in Famagusta and Nicosia stations of 
north Cyprus using both the employed scenarios, but for bet-
ter accuracy and reliability, Scenario 1 is preferable. 

With different topography, human activities and vulnera-
bility to drought, varied results could be obtained from other 
areas and stations within northern Cyprus. Hence, future 
studies should incorporate other stations that were not con-
sidered in this study. In addition, other methods should be 
tested such as external calibration which uses other station 
data to validate another, in case of shortage or lack of data in 
other areas of northern Cyprus.
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