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a b s t r a c t
At room temperature and atmospheric pressure, water electrolysis and Pd/MWCNTs catalyst are 
used to investigate the feasibility of in-situ synthesizing hydrogen peroxide in a safe way. Meantime, 
the ordinary Ti/β-PbO2 anode and graphite cathode are adopted to construct the water electrolysis 
system. During experiments, the features of Pd/MWCNTs catalyst are characterized by transmission 
electron microscope/energy dispersive spectrometer, X-ray diffraction and X-ray photoelectron spec-
troscopy. The effect of pH, current density, catalyst dosage, interelectrode distance, agitation speed 
and different cations on H2O2 concentration is studied. Energy consumption for different current 
density is analyzed, too. The results show that H2O2 concentration for the optimal conditions, namely 
current density of 20 mA/cm2, pH of 3, catalyst dosage of 0.5 g, interelectrode distance of 20 mm and 
agitation speed of 460 rpm, can attain to about 28 mg/L in 90 min. Additionally, under the above 
conditions, H2O2 concentration for water including Mg2+ ion can rapidly get to about 36 mg/L in 
30 min. Em increases from 213.0 to 368.8 kWh/kg when current density varying from 10 to 25 mA/cm2. 
However, for the lowest current density of 5 mA/cm2, its Em is 288.5 kWh/kg and is very high, too. 
The used process is feasible for in-situ synthesis of hydrogen peroxide.

Keywords:  Hydrogen peroxide; Pd/MWCNTs catalyst; Ti/β-PbO2 anode; In-situ synthesis; Water 
electrolysis

1. Introduction

Hydrogen peroxide (H2O2) is one of the most important 
chemical materials and is widely used in various fields, such 
as wastewater treatment, pulp and paper industry, cosmetic 
and pharmaceutical industry, chemical synthesis, semicon-
ductor cleaning and soil remediation [1–8]. Thereinto, due 
to powerful and environmentalfriendly characteristic, the 
demand for hydrogen peroxide in wastewater treatment is 
becoming more enormous, specially the Fenton oxidation 

process spurting. However, at present, hydrogen peroxide is 
mainly produced by anthraquinone autooxidation process, 
which has a relatively high cost and easily brings environ-
mental hazards [1–3,9–15]. In addition, during the trans-
portation and storage of concentrated peroxide solution, 
special precaution related to safety needs to be considered 
[1–3,9–15]. Moreover, for the typical end consumers, the 
concentrated H2O2 for reducing transportation cost is gener-
ally diluted to a concentration of 2–8 wt.% for use [5,16,17]. 
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Consequently, to meet the consumers’ requirements and 
avoid the environmental and safe risks, the low cost, small 
scale and on-site processes about hydrogen peroxide produc-
tion have attracted the researchers’ concerns [14,15,17–20]. 
Typically, direct synthesis of hydrogen peroxide utilizing 
hydrogen and oxygen is considered as one of the promising 
processes due to its economical and environmentally benign 
features [4,8,19,21].

Currently, during direct synthesis of hydrogen perox-
ide, hydrogen and oxygen are used directly as raw materi-
als. Because of the low solubility of oxygen and hydrogen in 
water, high pressure up to over 100 bar is generally adopted 
in order to further increase the yield [1,16]. Additionally, 
the reactions involved in the direct synthesis of hydrogen 
peroxide are as below [1,3,4,7,10].

Oxidation of hydrogen to hydrogen peroxide: 

H O H O2 2 2 2+ →  (1)

Formation of water: 

2 22 2 2H O H O+ →  (2)

Decomposition of hydrogen peroxide: 

2 22 2 2 2H O H O O→ +  (3)

Hydrogenation of hydrogen peroxide: 

H O H H O2 2 2 22+ →  (4)

According to Eqs. (1)–(4), the undesired reactions of Eqs. 
(2)–(4) also emerge together with the main synthesis reaction 
of Eq. (1). For this reason, the palladium–based catalysts, 
such as Pd, Pd-alloy and bimetallic Au–Pd catalyst [1–26], 
are widely applied to obtain high yield and selectivity of 
hydrogen peroxide [1,3,4,6,13,16]. Meantime, for the effec-
tive distribution of active components, palladium is ordi-
narily supported on some porous materials such as SiO2, 
TiO2, Al2O3, and activated carbon [1–26]. However, when 
hydrogen and oxygen are directly supplied, due to a broad 
explosive range of H2/O2 mixtures, the safe challenge must 
be faced during the direct synthesis of hydrogen peroxide. 
Furthermore, in some processes, high pressure is adopted to 
enhance the yield [1,16], which further increases the safety 
risk. For that, to reduce the explosive potential, hydrogen 
and oxygen generated from water electrolysis are directly 
adopted by a few researchers to in-situ synthesis of hydrogen 
peroxide [20]. However, the noble metal electrodes, such as 
Pt, are often utilized [20], which prevents the process spread-
ing in wastewater treatment field. Additionally, the support 
materials for catalyst are required to have highly settleable 
performance, as is favorable to recovery and reuse of cata-
lyst. To this end, the researchers are trying their best to make 
the above process better so that it can be used in wastewater 
treatment in a safe way.

The anode of Ti/β-PbO2, owing to stable physical 
and chemical features, easy preparation and low cost, is 

widely used for pollutant removalfrom wastewater [27,28]. 
In addition, multi-walled carbon nanotubes (MWCNTs) 
are very fluffy and can be dispersed rapidly into water by 
mechanical stirring. Meantime, it is found that MWCNTs 
have highly settleable feature in water and can settle down 
quickly to achieve solid-liquid separation. Consequently, 
we think that MWCNTs are a very suitable support material 
for catalyst when the in-situ synthesizing hydrogen perox-
ide is applied in wastewater treatment. However, during 
in-situ synthesis of hydrogen peroxide, the Ti/β-PbO2 anode 
and the MWCNTs support material for catalyst are used, 
which is seldom reported up to now.

In this paper, the ordinary Ti/β-PbO2 anode and graphite 
cathode are used to construct the water electrolysis system. 
At room temperature and atmospheric pressure, water elec-
trolysis and Pd/MWCNTs catalyst are adopted to realize 
in-situ synthesis of hydrogen peroxide in a safe way. During 
the experiments, the features of Pd/MWCNT catalyst are 
characterized by transmission electron microscope (TEM)/
energy dispersive spectrometer (EDS), X-ray diffraction 
(XRD) and X-ray photoelectron spectroscopy (XPS). Next, 
the effect of pH, current density, catalyst dosage, interelec-
trode distance, agitation speed and different cations on H2O2 
concentration is investigated. Finally, energy consumption 
for different current density is analyzed. The aims of this 
paper are to demonstrate the feasibility of in-situ synthe-
sizing hydrogen peroxide using water electrolysis and Pd/
MWCNTs catalyst. Additionally, the work will bring a new 
production method of hydrogen peroxide applied to waste-
water treatment in a safe way.

2. Materials and methods

2.1. Preparation of Pd/MWCNTs catalyst

Palladium acetate of 0.105 g, which is purchased from 
Shanxi Kaida Chemical Reagent Co. Ltd., China, is dis-
solved in 6 mL HCl solution of 1 mol/L at 60°C. After that, 
the above mixture is oxidized by addition of 2 mL solution 
(10%NaClO:10%H2O2 = 1:5) for 5 min. Next, the mixture is 
dumped slowly into 1 g MWCNTs which are of industrial 
grade and supplied by Suzhou Tanfeng Techology Inc., 
China. Then, the slurry is mixed by ultrasonic vibration for 
10 min. Thereafter, 20 mL sodium formate solution of 3 mol/L 
is added into the slurry. Finally, the slurry, which is kept still 
for 4 h at 70°C, is washed by distilled water and sent to dry 
at 60°C under vacuum. Through the above operations, Pd/
MWCNTs catalyst with the predetermined Pd loading of 
5 wt.% is obtained. 

2.2. Experimental setup and procedure

The experimental setup is schematically demonstrated in 
Fig. 1. Prior to a test, a given mass catalyst of Pd/MWCNTs is 
put into a glass beaker with a magnetic rotor. Next, 100 mL 
of the prepared solution containing 0.1 mol/L Na2SO4 is 
dumped into the above beaker. Then, the Ti/β-PbO2 anode 
and graphite cathode are parallel inserted into the solution 
to a depth of 50 mm, and then the magnetic agitator is run 
at a given agitation speed. Finally, the DC power, which is 
purchased from Shenzhen Zhaoxin Electronic Instrument 
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Equipment Co. Ltd., China, is connected to the electrodes 
and operated in a constant current mode. Meantime, a timer 
is turned on to record reactive time.

Before a run, the solution is prepared by addition of 
Na2SO4 into distilled water to improve its conductivity. 
Simultaneously, pH value is adjusted by addition of 1 mol/L 
H2SO4 according to the experimental demand. During the 
experiments, the adopted Ti/β-PbO2 anode is home-made by 
the electrodepositing method according to literatures [27,28], 
and its size is 75 × 20 × 1 mm. The used graphite cathode with 
the dimension 75 × 25 × 1 mm is of high purity (≥99.5%) and 
bought from Beijing Crystal Special Carbon Technology Co. 
Ltd., China.

During each run, the sample of 6 mL is taken at a 
desired time. Thereafter, the prepared solution of 6 mL is 
supplemented immediately into the beaker, and the above 
operation is repeated until the test is finished. Next, the 
sample is centrifuged at 4,000 rpm for 5 min, and then the 
supernatant is filtered by a sand core filtration unit with a 
micro-porous membrane. Finally, the filtrate is sent to ana-
lyze physical–chemical parameters. Pd/MWCNTs catalyst 
settled by centrifugation is rinsed by distilled water into 
a plastic centrifugal tube of 100 ml. In addition, when the 
trial is finished, the residual solution is also dumped into 
the above tube and centrifuged at 3,000 rpm for 10 min. 
At last, Pd/MWCNTs catalyst settled in the tube is air-dried 
for future trials. 

2.3. Analytical methods

The content of H2O2 produced in the solution is mea-
sured at 405 nm by a spectrophotometer (Unico 7200, Unicol 
[Shanghai] Scientific Instrument Co. Ltd., China) after col-
oration with TiSO4 [20]. pH value is determined with a pH 
meter (Hach 2000, Hach Company, USA). Conductivity 
is monitored by a conductivity meter (DDS-11C, INESA 
Scientific Instrument Co. Ltd., Shanghai, China).

The features of Pd/MWCNTs catalyst are characterized 
by X-ray diffraction (XRD-7000, SHIMADZU, Japan), TEM 
(; FEI Tecnai G2 F30 S-TWIN, FEI, USA) coupled with an 
energy dispersive spectrometer (EDS) and X-ray photo-
electron spectroscopy (XPS) (PHI 5000 VersaProbe, ULVAC-
PHI, Japan).

3. Results and discussion

3.1. Characterization of Pd/MWCNTs catalyst

The TEM image of the fresh Pd/MWCNTs catalyst (Fig. 2) 
shows that some small particles with the size of 5–13 nm 
(mean size 8.1 nm in the histogram) are homogeneously 
dispersed on the surface of MWCNTs. Simultaneously, the 
small particles are identified as Pd particles according to the 
results of EDS and its content is about 1.4 wt.%. However, 
the TEM image of the used catalyst reveals that the Pd par-
ticles are partly aggregated with particle size about 5–17 nm 
(mean size 11.4 nm in the histogram) and the content 
decreases to about 1.2 wt.%.

The XRD patterns of the used and fresh Pd/MWCNTs 
catalysts (Fig. 3) all demonstrate the existence of Pd. 
Thereinto, the five diffraction peaks at 40.3°, 46.7°, 68.4°, 
82.3° and 86.9° represent, respectively, the (111), (200), (220), 
(311) and (222) planes of Pd, which infer that Pd exists in the 
form of the typical face-centered cubic (FCC) crystal struc-
ture [29–35]. According to the Debye–Scherrer formula [33], 
the average crystalline sizes of the fresh and used catalysts 
are 8.3 and 11.1 nm, respectively, which is in general accord 
with the results from the TEM.

XPS demonstrates that there are two sets of 3d peaks in 
the Pd3d core spectrum of the fresh Pd/MWCNTs catalyst 
(Fig. 4). Thereinto, the one set including Pd3d3/2 (342.9 eV) 
and Pd3d5/2 (337.7 eV), namely Pd(II) species, can be des-
ignated as PdO and PdO2, respectively. Similarly, the other 
set containing Pd3d3/2 (340.9 eV) and Pd3d5/2 (335.8 eV), 
namely Pd(0) species, can be assigned to Pd metal, which are 
in accord with the literatures [31,32,34,35]. Additionally, the 
XPS quantitative analysis shows that the contents of Pd and 
MWCNTs are 1.12 wt.% and 93.51 wt.%, respectively.

3.2. Influential factors

3.2.1. Effect of pH

pH value of water body is a vital parameter and gener-
ally influences on the characteristics of water electrolysis and 
catalyst. Fig. 5 shows the effect of pH on H2O2 concentration. 

Seen from Fig. 5, H2O2 concentrations for pH 1 and 2 all 
climb rapidly to a top in 30 min and then slightly decrease. 
Similarly, H2O2 concentrations for pH 4 and 5 increase to 
a high point in 15 min and then are in a slight fluctuation 
state. However, for pH 3, H2O2 concentration seemingly 
improves in a straight way and attains to the highest value 
of 16 mg/L in 120 min. At the same time, it is noted that H2O2 
concentration for pH 7 is very little and is almost zero except 
for 15 and 120 min. In addition, it is found that at the same 
instant H2O2 concentrations decrease when pH changes from 
3 to 7. Moreover, after 45 min, H2O2 concentration for pH 3 
is higher than that for pH 1 or 2, respectively. Consequently, 
considering the consumption of acid and H2O2 concentra-
tion, pH 3 is determined as the most suitable pH condition.

The reasonable interpretations are as below. During 
the direct synthesis of hydrogen peroxide, the side reac-
tions (Eqs. (2)–(4)) also occur together with the main syn-
thesis reaction (Eq. (1)). For that, the acids are generally 
used as additives to improve the selectivity to hydrogen 
peroxide. It is reported that the acid additives can suppress 

Fig. 1. Diagram of the experimental setup. (1) Magnetic agita-
tor, (2) magnetic rotor, (3) glass beaker, (4) water surface curve, 
(5) Ti/β-PbO2 anode, (6) graphite cathode, (7) negative wire, 
(8) positive wire, (9) DC power.
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Fig. 2. TEM images (a and c) and corresponding particle size distribution histograms (b and d) of the fresh and used Pd/MWCNTs 
catalysts, respectively.

Fig. 3. XRD patterns of the fresh and used Pd/ MWCNTs 
catalysts. Fig. 4. XPS spectra of the fresh Pd/MWCNTs catalyst.
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the decomposition and hydrogenation reactions of hydro-
gen peroxide [1,4,16,17,20,22], which is the main reason that 
H2O2 concentrations decrease when pH rises from 3 to 7. 
However, excessive acid additives easily cause the disso-
lution of active noble metal component from the support 
materials for catalyst [4,17], as is a possible cause that after 
45 min H2O2 concentration for pH 3 is higher than that for 
pH 1 or 2, respectively. And this is also a reason that H2O2 
concentrations for pH 1 and 2 all climb rapidly to a top in 
30 min and then slightly decrease.

3.2.2. Effect of current density

During water electrolysis, current density indicates the 
number of ions that are flowing through the electrolyte solu-
tion per unit time and cross-sectional area and affects the 
yield and emission rate of hydrogen and oxygen generated 
from water electrolysis [36]. The effect of current density on 
H2O2 concentration is demonstrated in Fig. 6.

As seen in Fig. 6, H2O2 concentrations for 5 and 10 mA/
cm2 all increase with time extending, and the concentration 
changing trend for 10 mA/cm2 is more remarkable than that 
for 5 mA/cm2. However, H2O2 concentrations for 15 and 
20 mA/cm2 increase rapidly in 90 min and then decrease 
slightly. Additionally, the concentration changing tendency 
for 25 mA/cm2 is similar with those for 15 and 20 mA/cm2. 
Significantly, H2O2 concentration is zero when the DC power 
is turned off, which suggests that H2O2 cannot be produced 
when Pd/MWCNTs catalyst is used only. Meantime, it can be 
also seen from Fig. 6 that at the same instant H2O2 concentra-
tions sharply enhance in 75 min with current density rising 
from 5 to 25 mA/cm2, and H2O2 concentration for 25 mA/
cm2 can get the highest value of 24 mg/L. Simultaneously, 
it is found that the β-PbO2 film on the surface of anode eas-
ily flakes away in a tiny dot form when current density is 
25 mA/cm2. Hence, current density of 20 mA/cm2 is applied 
in the subsequent experiments to extend service life of the 
Ti/β-PbO2 anode.

During water electrolysis, the main reactions near the 
electrode surfaces are as follows:

Anodic reaction: 

2 4 42 2H O e O H− → +− +  (5)

Cathodic reaction: 

2 2 22 2H O e H OH+ → +− −  (6)

According to the Eqs. (5) and (6), the bigger current den-
sity is, the more hydrogen from the cathode and oxygen from 
the anode are. Thus, H2O2 concentration is the highest in 
accordance with the Eq. (1), which may be a main reason that 
H2O2 concentrations sharply enhance in 75 min with current 
density rising from 5 to 25 mA/cm2. However, when H2O2 
concentration becomes higher and higher, a small amount of 
hydrogen peroxide is decomposed, as may be a cause that 
H2O2 concentrations for 15, 20 and 25 mA/cm2 attain to the 
top and then slightly decrease.

3.2.3. Effect of catalyst dosage

Catalyst dosage is a very important factor for in-situ 
synthesis of hydrogen peroxide and influences not only 
H2O2 concentration but also the cost of the adopted pro-
cess. The effect of catalyst dosage on H2O2 concentration is 
illustrated in Fig. 7.

As shown in Fig. 7, under different catalyst dosage, H2O2 
concentrations all increase with reactive time prolonging. 
Thereinto, H2O2 concentrations for 0.25, 0.5 and 1 g increase 
rapidly. Remarkably, H2O2 does not emerge when the DC 
power is supplied only. However, at the same instant, H2O2 
concentrations initially improve with catalyst dosage rising 
from 0.25 to 0.5 g, and then gradually drop down when cat-
alyst dosage ascending to 1.8 g. The results are consistent 
with literatures [13]. Meantime, the results also suggest that 
there is an optimal catalyst dosage when the dosage changes 
from 0.25 to 1.8 g. Therefore, 0.5 g is regarded as the opti-
mum catalyst dosage and used in the future experiments.

The reasonable explanations are as follows. As current 
density of 20 mA/cm2 keep stable, for different catalyst 

Fig. 5. Effect of pH on H2O2 concentration. Current density, 
10 mA/cm2; voltage fluctuating range, 3.1–4.5 V; catalyst dosage, 
0.5 g; interelectrode distance, 15 mm; agitation speed, 700 rpm.

Fig. 6. Effect of current density on H2O2 concentration. pH, 
3; voltage fluctuating range, 2.7–4.5 V; catalyst dosage, 0.5 g; 
interelectrode distance, 15 mm; agitation speed, 700 rpm.
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dosage, the yield of hydrogen and oxygen generated from 
water electrolysis is also constant according to Eqs. (5) and 
(6). Accordingly, the more catalyst dosage is, the higher H2O2 
concentration is, which is a reason that H2O2 concentra-
tions improve with catalyst dosage rising from 0.25 to 0.5 g. 
However, when catalyst dosage is excessive, it is reported 
that the selectivity to H2O2 decreases rapidly and three side 
reactions, namely the oxidation of hydrogen with oxygen to 
form water, decomposition of H2O2 and the hydrogenation of 
hydrogen peroxide to form water (Eqs. (2)–(4)), are obvious 
[2,13,24], which is a reason that H2O2 concentrations gradu-
ally drop down when catalyst dosage ascends to 1.8 g.

3.2.4. Effect of interelectrode distance

As hydrogen and oxygen generated from water elec-
trolysis are discharged from the electrode surfaces and dis-
solved into water, interelectrode distance affects the spatial 
distribution of hydrogen and oxygen in the reactor and fur-
ther does H2O2 concentration. The effect of interelectrode 
distance on H2O2 concentration is presented in Fig. 8.

As seen from Fig. 8, H2O2 concentrations for different 
interelectrode distance all increase with time improving. 
Thereinto, H2O2 concentration for 20 mm improves strikingly. 
In addition, at the same instant, H2O2 concentrations increase 
dramatically when interelectrode distance changes from 15 
to 20 mm. However, H2O2 concentrations decrease gradu-
ally while interelectrode distance continuously enhancing 
to 30 mm. The above results imply that there is an optimal 
interelectrode distance of 20 mm where the highest H2O2 
concentration is gotten.

To explain the above results, Fig. 9 depicts the relations 
between the interelectrode distance and the diffusion area 
of oxygen and hydrogen. Except the interelectrode distance, 
the other experimental conditions are all uniform, and so it is  
reasonably assumed that the oxygen discharging speed from 
the anodic surface and the oxygen diffusing rate into water are 
constant. Thus, oxygen is diffused into the ring-shaped area 
near the surface of electrode (Fig. 9). The diffusion feature of 

hydrogen is similar with that of oxygen. Consequently, seen 
from Fig. 9, the interelectrode distance influences directly 
the effective diffusion area. For example, when the distance 
becomes small, the effective diffusion area reduces owing to 
the two diffusion areas overlapping. In addition, agitation 
speed of the solution between the two electrodes decreases 
due to interelectrode distance becoming small. Therefore, 
the catalyst between the two electrodes also reduces the col-
lision chance to oxygen and hydrogen. Similarly, when the 
interelectrode distance exceeds the limit, the effective diffu-
sion area also reduces due to narrow spaces between the elec-
trodes and the inner wall of the beaker, and agitation speed 
of water between the narrow spaces also decreases. All these 

Fig. 7. Effect of catalyst dosage on H2O2 concentration. Current 
density, 20 mA/cm2; voltage fluctuating range, 4.1~4.9 V; pH, 3; 
interelectrode distance, 15 mm; agitation speed, 700 rpm.

Fig. 8. Effect of interelectrode distance on H2O2 concentration. 
Current density, 20 mA/cm2; voltage fluctuating range, 4.4~5.2 V; 
pH, 3; Catalyst dosage, 0.5 g; Agitation speed, 700 rpm.

Fig. 9. Sectional view when the electrodes inserting into glass 
beaker. (1) Diffusion area of oxygen, (2) the anode, (3) the cath-
ode, (4) diffusion area of hydrogen, (5) the overlap area of oxygen 
and hydrogen D1: The inner diameter (Ф = 45 mm) of the beaker 
D2: Distance between the electrodes.
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have an impact on H2O2 concentration, which may be the 
main reasons for the above results.

3.2.5. Effect of agitation speed

The magnetic agitation speed dramatically affects the 
collision opportunity between oxygen, hydrogen and cat-
alyst, and further influences on H2O2 concentration. Fig. 10 
depicts the effect of agitation speed on H2O2 concentration.

As demonstrated in Fig. 10, when agitation speed changes 
from 230 to 1,050 rpm, H2O2 concentration for 230 rpm is the 
lowest and is about 16 mg/L in 120 min. Conversely, H2O2 
concentration for 460 rpm is the highest and can attain to 
approximately 28 mg/L in 90 min. However, for agitation 
speed of 700 and 1,050 rpm, H2O2 concentration for 1,050 rpm 
is lower in 70 min than that for 700 rpm, and afterwards it is 
on the contrary. The results infer that 460 rpm is the most 
suitable agitation speed.

The reasonable explanations are as follows. For a given 
current, the yield of hydrogen and oxygen from water elec-
trolysis is also constant according to Eqs. (5) and (6). At a 
lower agitation speed, the collision opportunity between 
oxygen, hydrogen and catalyst becomes less, and so H2O2 
concentration goes lower. However, when agitation speed 
becomes higher, the catalyst has moved rapidly to the next 
space area before oxygen and hydrogen gets to the sur-
face of catalyst, which makes the contacting opportunity 
between oxygen, hydrogen and catalyst less. Therefore, H2O2 
concentration goes lower, too.

3.2.6. Effect of cations

Some ordinary cations, such as K+, Na+, Ca2+ and Mg2+, 
are often found in the surface water, and their existence 
affects possibly H2O2 concentration. For that, to get the 
simulated water containing K+, Na+, Ca2+ and Mg2+, KNO3, 
NaNO3, Ca(NO3)2 and Mg(NO3)2 (Analytical grade) are also 
added into distilled water according to the experimental 
requirements. According to the literatures [37,38], initial 

concentration of K+, Na+, Ca2+ and Mg2+ in solution is 20, 120, 
98 and 22 mg/L, respectively. For solution containing four 
cations, the fore-mentioned water is mixed together. The 
effect of different cations on H2O2 concentration is estimated 
in Fig. 11.

As seen in Fig. 11, H2O2 concentration for no extra addi-
tion solution is the lowest and is about 28 mg/L in 90 min. 
As for water containing Ca2+, its H2O2 concentration is 
only slightly higher than that for no extra addition water. 
Additionally, for water containing K+ or Na+, respectively, 
H2O2 concentrations are nearly equal and are all higher than 
the fore-mentioned water’s. Remarkably, H2O2 concentration 
for solution including Mg2+ is the highest and can rapidly get 
to about 36 mg/L in 30 min, which suggests that Mg2+ ion is 
helpful to in-situ synthesis of hydrogen peroxide. However, 
H2O2 concentration for solution containing four cations is 
slightly higher than that for water containing Ca2+. In addi-
tion, its H2O2 concentration is also lower than that for water 
containing K+ or Na+, respectively. For solution containing 
four cations, it seems that Ca2+ ion plays a negative role in 
synthesizing hydrogen peroxide. However, the above results 
are worth further exploring.

3.3. Analysis on energy consumption

Energy consumption is one of the important indexes 
when the process is used for synthesis of hydrogen peroxide. 
Excess energy consumption will increase the operational cost 
and prevent the process from broadly spreading, too. Hence, 
energy consumption for different current density is analyzed 
as an example. During the calculations, energy (Em), which 
is applied to produce a unit mass of hydrogen peroxide, is 
calculated by Eq. (7).

E
IVdt

V Cm

t

s t

=
∫
0  (7)

Fig. 10. Effect of agitation speed on H2O2 concentration. Current 
density, 20 mA/cm2; voltage fluctuating range, 4.7–4.8 V; pH, 3; 
catalyst dosage, 0.5 g; interelectrode distance, 20 mm.

Fig. 11. Effect of different cations on H2O2 concentration. Current 
density, 20 mA/cm2; voltage fluctuating range, 4.9–5.6 V; pH, 3; 
catalyst dosage, 0.5 g; Interelectrode distance, 20 mm; agitation 
speed, 460 rpm.
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where I is the current flown through the cathode and the 
anode (A), V is the potential supplied to the two electrodes 
(V), t is the reactive time (S), VS is the volume of the solution 
(L), Ct is H2O2 concentration (mg/L) at t moment.

According to the results from Fig. 6, H2O2 concentrations 
for different current density all show an increasing tendency 
in 75 min, and so during the calculations 75 min is regarded 
as an effective time. According to Eq. (7), energy consump-
tion for different current density is listed in Table 1. The 
table  demonstrates that when current density varies from 
10 to 25 mA/cm2, Em increases from 213.0 to 368.8 kWh/kg, 
which implies that energy consumption sharply enhances. 
However, for the lowest current density of 5 mA/cm2, its 
Em is 288.5 kWh/kg and energy consumption is very high, 
too. All these results suggest that there lies the optimal 
current density of 10 mA/cm2 where energy consumption is 
the smallest [39,40].

4. Conclusions

In this paper, the ordinary Ti/β-PbO2 anode and graphite 
cathode are used to construct the water electrolysis system. 
In-situ synthesis of hydrogen peroxide using water electrol-
ysis and Pd/MWCNTs catalyst is investigated. Some conclu-
sions can be drawn as below.

The results from TEM/EDS, XRD and XPS show the dis-
tribution and crystal structure of Pd on MWCNTs.

The optimal experimental conditions, which are current 
density of 20 mA/cm2, pH of 3, catalyst dosage of 0.5 g, inte-
relectrode distance of 20 mm and agitation speed of 460 rpm, 
are determined and its H2O2 concentration can attain to about 
28 mg/L in 90 min. Additionally, under the above conditions, 
H2O2 concentration for water including Mg2+ ion can rap-
idly get to about 36 mg/L in 30 min. Em increases from 213.0 
to 368.8 kWh/kg when current density varying from 10 to 
25 mA/cm2. However, for the lowest current density of 5 mA/
cm2, its Em is 288.5 kWh/kg and is very high, too.

In-situ synthesis of hydrogen peroxide using water 
electrolysis and Pd/MWCNTs catalyst is feasible.
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