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a b s t r a c t
In this study, we conducted a numerical simulation to evaluate stability in the seawater reverse 
osmosis (SWRO) process against seasonal variations of feed water. The impact of element configu-
ration on SWRO operation was analyzed using a process model consisting of the solution–diffusion 
model. Seawater quality and temperature data collected from the intake of the Fujairah desalina-
tion plant (United Arab Emirates) were used to identify optimum internally staged design (ISD) 
configurations. Monitoring data were also used to simulate changes in SWRO performance. The 
process performance of the ISD configurations as compared to conventional design configurations 
in terms of specific energy consumption, permeate total dissolved solids concentration and recovery 
ratio. The results showed that SWRO processes with four ISD configurations met the performance 
requirements over 12 months despite the fluctuations in seawater quality and temperature. The pre-
diction results of the ISD configurations showed stable operation during the 12 month simulation 
period. These configurations had a significant advantage with respect to membrane maintenance. 
This study’s findings could be used to optimize the element configuration of the SWRO process by 
predicting the process performance while accounting for seasonal variations of seawater quality and 
temperature.
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1. Introduction

Seawater reverse osmosis (SWRO) is a technology that
has recently drawn attention due to the advantages of using 
seawater as the main source for feed water [1]. Since its 
commercialization, a great deal of research has been con-
ducted to improve its efficiency [2]. Three methods are often 
employed to improve the process performance and increase 
the energy efficiency of SWRO. First, improvements in the 

performance of the semi-permeable membrane used to 
purify the seawater enhance the overall SWRO performance. 
Water–solute selectivity increases the energy efficiency of 
the process by eliminating the additional processes needed 
to separate water and solute [3–5]. The membrane devel-
opment and its modular scale-up for commercialization, 
however, have encountered several difficulties—in particu-
lar, the tradeoff relation of water and salt permeabilities is 
a critical hindrance to improve a membrane with both high 
water flux and high solute rejection [5]. Second, the design of 
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the SWRO process is an important performance factor [6,7]. 
A one-stage SWRO system is enough to meet the designed 
process performance standards if the appropriate pretreat-
ment process is used [8] or the overall water recovery is set 
to below 50% [9]. Finally, the optimization of operation and 
maintenance (O&M) in the SWRO process can play a sup-
portive role in reducing the additional energy consumption 
caused by membrane fouling over a long period of filtration. 
As the membrane cleaning and replacement schedule affects 
process performance, it is important to decide when and how 
to clean the membrane properly [10,11]. In the design and 
O&M steps, SWRO optimization should take into account 
the seasonal variations of water quality and temperature in 
the target intake area [12–14].

Earlier studies showed that internally staged design 
(ISD) can be applied at both the design and operation stages 
of SWRO to improve the process’s water recovery, energy 
consumption, and degradation of such performances over 
the operation time. ISD combines more than two types of 
membrane elements to configure a pressure vessel rather 
than a single membrane element. Its advantage over a single 
element configuration is that a smaller plant size is required 
[15]. This can reduce capital costs by 5%–8% [16]. In addi-
tion, operation costs, including expenditures for electricity, 
chemical agents for membrane cleaning, and membrane 
replacement, can be reduced by 0.7%–6.5% [15]. However, 
the use of a single type of SWRO membrane for an element 
configuration in a pressure vessel does not guarantee the 
optimal performance of the SWRO process. Therefore, dif-
ferent types of membrane elements must be combined for 
efficient ISD depending on the seawater quality and the 
target SWRO performance. For example, in the case of sea-
water with high fouling potential, a high rejection mem-
brane should be used as the lead element [17]. If low energy 
consumption is required in the SWRO process, a high flux 
membrane should be included in the configuration [18]. 
Previous studies have focused on either numerical demon-
strations of the benefits of ISD or on developing algorithms 
to search for optimum ISDs [15–18]. Their simulation condi-
tions have generally been constant temperatures and total 
dissolved solids (TDS) concentrations over time. For a more 
practical simulation, however, it is important to use actual 
monitoring data, rather than inputting constant temperature 
or TDS concentrations into the developed algorithm.

In this study, we employed ISD to run the SWRO sys-
tem efficiently under various seasonal variations of seawa-
ter quality and temperature. To this end, monitoring data 
of seawater quality and temperature were used as the input 
data for the ISD optimization algorithm to obtain optimal 
configurations. Then, the performance of the SWRO process 
with ISD configurations was compared to that of conven-
tional design (CD) configurations. The algorithm used in this 
study was a modified version of a previously developed ISD 
optimization algorithm [17]. This algorithm included one of 
the famous optimization algorithms, the pattern search algo-
rithm. The difference between this modified algorithm and 
the previous algorithm was that they were with and with-
out temperature correction factors (TCF), respectively. In the 
modified algorithm, TCFs were applied to water perme-
ability and salt permeability coefficients. Comparisons of 
the process performance were accessed in terms of specific 

energy consumption (SEC), permeate water quality, and 
recovery ratio. Finally, the effect of ISD configurations on the 
cleaning frequency was analyzed. In summary, the specific 
objectives of this study were (1) to propose an optimization 
algorithm for ISD configurations that could meet the perfor-
mance requirements with monthly fluctuations in seawa-
ter quality and water temperature, (2) to compare process 
performance of SWRO models depending on the element 
configurations over the 12-month simulation period, and 
(3) to analyze the effect of the element configurations on the 
cleaning schedule.

2. Materials and methods

2.1. Feedwater variation in real plant

Fig. 1 illustrates the seasonal variations of seawater tem-
perature and TDS concentration in the intake of the Fujairah 
desalination plant in the United Arab Emirates during 12 
months of operation, from February 2006 to January 2007. 
Monitoring data consisted of 273 paired datasets of seawa-
ter temperature and TDS concentration in a daily format. 
Null data in the datasets were eliminated to avoid diver-
gence of the SWRO model during simulation. The tem-
perature and TDS concentration increased from February 
to a peak in August and then decreased to the end of the 
period. The TDS concentration had a maximum value of 
36,585 mg/L and a minimum value of 38,219 mg/L. The tem-
perature ranged between 23.1°C and 35.7°C. Monitoring 
data were utilized in two different ways. First, in the opti-
mization step, the monthly average values of TDS concen-
tration and temperature were employed to identify the 
optimum ISD configuration. In doing so, the optimization 
algorithm could reduce iteration steps and derive optimum 
element configurations for monthly fluctuations at a rea-
sonable time. Second, daily values of temperature and TDS 
concentration were used to simulate the SWRO performance 
depending on the membrane configuration. The process per-
formance was evaluated daily, as the simulation of the pro-
cess model was undertaken daily. The number of datasets 
was increased from 273 to 365 using simple interpolation. It 
is noted that the monitoring data of the Fujairah desalina-
tion plant was previously employed to conduct simulation 
studies for the reverse osmosis process [19–22]. The part of 

Fig. 1. Graphical illustration of seawater temperature and total 
dissolved solids (TDS) concentration in the intake of the Fujairah 
desalination plant during the 12-month observation period.
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dataset, seawater temperature and TDS concentration in 
the intake of the Fujairah desalination plant, was employed 
in this study to consider seasonal variations of seawater 
quality in the simulation of reverse osmosis process.

2.2. SWRO process model considering temperature changes

We adopted the solution–diffusion model to numerically 
describe the transport of seawater in the membrane. This 
model uses two types of flux to represent the diffusive 
transport of water and salt taking place individually through 
the membrane. The water flux vw and salt flux vs are calcu-
lated as follows [23]:

v A pw m� �� �� ��  (1)

v B c cs m p� �� �  (2)

where A is water permeability and B is salt permeability, Δp 
and Δπ denote transmembrane pressure and osmotic pressure 
difference, respectively, cm refers to the TDS concentration at 
the membrane wall, and cp is the permeate TDS concentra-
tion, which can be defined as vs/vw. Eqs. (1) and (2) can be 
modified to take temperature variation into account during 
the simulation. The modified equations are as follows [19]:
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where TCF indicates a temperature correction factor. The 
TCF is multiplied by A and B. Thus, the model reflects the 
change in membrane properties with temperature variations. 
The subscripts in TCF represent the TCF for A and B. TCF 
equations have an exponential form [21]:
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where aT and bT are the temperature coefficients for TCFA 
and TCFB, respectively. Tref in this study was set to 298.15 K 
when A and B were calculated using the projection program 
of the membrane manufacturer at 298.15 K. Seawater viscos-
ity μ with varying temperature can be calculated with an 
empirical equation [24]:
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where T is the seawater temperature in absolute temperature. 
A theoretical equation is used to calculate changes in osmotic 
pressure to temperature changes [25]:
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where Nion denotes the number of ions, Rg is the gas constant, 
and Ms is the molecular weight of the solute.

In a process model, the crossflow velocity along the 
membrane channel is expressed as follows [19,26]:
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H

v d
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where u0 is the crossflow velocity at the entrance of the 
membrane channel, and ξ is a dummy variable for the inte-
gration of distance x. H* (=H0 – δc) denotes the effective height 
of the membrane channel and reflects the change in channel 
height from an initial channel height H0 due to an increase 
in cake-layer thickness δc. Similarly, the transmembrane 
pressure is calculated using the following equation [19,26]:
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where Δp0 is the transmembrane pressure at the entrance of 
the membrane channel, and kfriction is the friction coefficient for 
the channel wall and spacer in the membrane module. The 
TDS concentration in the membrane can be calculated using 
mass balance along the membrane channel:
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where c0 is the TDS concentration in the feed water.

2.3. Colloidal fouling and cake-enhanced osmotic pressure

Membrane resistance in the modified solution–diffusion 
model is calculated using the cake-layer deposition. The 
reciprocal of A is considered as membrane resistance. 
Colloidal fouling is assumed to be the main factor that 
increases membrane resistance. Therefore, the total mem-
brane resistance is calculated by adding the intrinsic mem-
brane resistance to the membrane resistance due to colloidal 
fouling:
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where e is cake-layer porosity, ρp and dp indicate the particle 
density and diameter of the colloidal foulant, respectively, 
and md represents the mass of the colloid deposit layer per 
membrane unit area. md can be calculated by integrating a net 
convective flux of foulant over time [27,28]:

m k c v v dd

t

f w� �� ��fp crit0
�  (14)

where τ is a dummy variable for the integration of time t, 
kfp denotes the colloidal fouling potential coefficient, and vcrit 
is the critical flux. It is assumed that colloidal foulant does 
not deposit on the membrane surface if vw is smaller than 
vcrit. The empirical correlation of vcrit~u0.4 was employed to 
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simulate the SWRO model [27]. The foulant concentration 
in the brine cf is calculated as follow:
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where cf0 indicates the foulant concentration in the inlet of 
the membrane channel.

The deposition of colloidal foulant leads to enhanced 
osmotic pressure at the membrane surface. Cake-enhanced 
osmotic pressure (CEOP) is a phenomenon wherein osmotic 
pressure increases due to the accumulation of colloidal foulant. 
CEOP is taken into account by considering the cake-hindrance 
effect on the mass transfer coefficient. The solute concentra-
tion at the membrane surface is expressed as follow [29]:
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where k* is the mass transfer coefficient under cake-hindrance. 
k* is calculated by considering the change of mass transfer 
coefficient due to cake layers:
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where Db denotes the bulk diffusion coefficients of the sol-
ute. τc (=1−ln(ε2)) is the cake-layer tortuosity. k is a mass 
transfer coefficient, which is determined using the following 
equation [30]:
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where dh is the hydraulic diameter of the membrane channel. 
Sh indicates the Sherwood number with the empirical equa-
tions as follow:

Sh Sc= 0 065 0 875 0 25. Re . .  (19)

where Re is the Reynolds number, and Sc is the Schmidt 
number.

2.4. Performance of the process model

The performance of the SWRO model was analyzed in 
terms of permeate TDS concentration, recovery ratio, and 
SEC. The permeate flow rate is calculated by integrating vw 
with respect to the distance x from the entrance to the end of 
the membrane channel. The permeate TDS concentration can 
be calculated by dividing the integration of salt flux along the 
total length of channel TL by the permeate flowrate Qp. The 
recovery ratio Rec is the ratio of the feedwater flow rate to the 
permeate flow rate [17]:
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where w is the membrane channel width. SEC is calculated 
by dividing the work done by the high-pressure pump WHP 
and the booster pump WBP

ERD by the amount of produced 
water in the SWRO system [31]:
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where ηHP is the high-pressure pump’s efficiency, ηBP indi-
cates the booster pump’s efficiency, and ηERD is the efficiency 
of the energy recovery device (ERD). pin and pout denote feed 
pressure before the high-pressure pump and brine pressure 
after passing the ERD, respectively. Table 1 shows the values 
for each parameter used in the simulation. It is noted that 
cp and SEC were used to determine the cleaning schedule in 
the SWRO model simulation. When the SEC or cp values of 
the SWRO model reached 2.5 kWh/m3 and 500 mg/L, respec-
tively, membrane cleaning was performed. In the simulation, 
it was assumed that the recovery of membrane performance 
after cleaning was 100%. Therefore, the total membrane 
resistance was initialized to Rm after the cleaning simulation.

2.5. ISD optimization algorithm

Fig. 2 represents the procedure of the ISD optimization 
algorithm against fluctuations in temperature and TDS con-
centration. The first step is to load the membrane properties 
designated by a specific manufacturer from the membrane 
database, which contains the water permeability and salt 
permeability specifications of membranes from various 
manufacturers. After loading the membrane properties, the 
design conditions for the SWRO process are inputted into 
the algorithm, and the constraints for the optimization and 
performance requirements are set. Monthly mean seawater 
temperature and TDS concentration values are used to reflect 
seasonal temperature and quality variations. The number of 
monthly mean values determines the number of scenarios 
generated from the optimization algorithm. As noted, the 
previously developed ISD optimization algorithm utilizes 
the pattern search algorithm, which searches a single case 
that maximizes the permeate flow rate. This algorithm was 
modified to produce outputs for more than one element con-
figuration during the iteration of the optimization algorithm. 
Thus, the optimization algorithm generates more than one 
element configuration for each scenario. Scenario studies 
were conducted for the monthly mean of seawater tempera-
ture and TDS concentration for 12 months, and 12 scenarios 
were generated. In the final step, a string search algorithm 
was used to find common ISD configurations among the 12 
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scenarios. The ISD configurations found were considered to 
meet every requirement for the monthly means of tempera-
ture and TDS concentration. The performance requirements 
were SEC with a maximum value of 2.5 kWh/m3 and perme-
ate TDS concentration with a maximum value of 500 mg/L. 
Four different membranes from the same manufacturer were 
used: two high flux and two high rejection.

3. Results and discussion

3.1. Element configurations from the optimization algorithm

Table 2 shows the number of ISD configurations gen-
erated by the optimization algorithm depending on the 
monthly fluctuations in temperature and TDS concentration. 
The changes in seawater properties affected the required 
number of adequate ISD configurations. The number of cases 
that met the design criteria decreased in correlation with the 
increase in temperature and TDS concentration, suggest-
ing that it may be hard for ISD to meet the performance 

requirements at high temperatures and TDS concentrations. 
Only four ISD configurations from those of 12 scenarios 
were suitable to use for the SWRO model simulation because 
the performance of four ISD configurations satisfied the per-
formance requirement (SEC ≤ 2.5 kWh/m3 and cp ≤ 500 mg/L) 
over a period of 12 months. Table 3 presents the element 
configurations that were used. Although the number of 
membrane types used for element combinations was set to 
a maximum of three, the algorithm suggested configuring 
only two types of membrane (i.e., HR 1 and HF 2) for the 
optimal ISD. High rejection membranes were positioned at 
the lead of the pressure vessel (i.e., from the first two up to 
elements), and the remaining elements were filled with high 
flux membranes. Otherwise, each of the four types of mem-
brane elements was used for individual CD configuration.

3.2. SWRO model simulation results

Fig. 3 illustrates the SWRO model simulation results for 
each element configuration in the pressure vessel. Monitoring 
data, described in Section 2.1, were used as input data to 
simulate the SWRO model depending on the fluctuations in 
seawater temperature and TDS concentration. CD 1 had the 
lowest SEC mean value due to the high permeate flowrate. 
The mean recovery ratio for CD 1 was 44%, which was the 
highest value among all configurations. In the case of other 
CD configurations, energy consumption gradually increased 
when changing a high flux configuration (such as that with 
HF 1) to a high rejection configuration (such as that with HR 
1). The decrease in water permeability led to a decrease in 
SEC in the constant operating pressure mode. Although the 
mean recovery ratio values for CD 3 and CD 4 were less than 
40%, they were more advantageous with respect to perme-
ate water quality. However, all of the selected ISD config-
urations displayed very stable performance with adequate 
levels of energy consumption, water recovery, and permeate 
TDS concentration regardless of their element combinations. 
They had an SEC mean value of 2.1 kWh/m3. Although they 
had a higher SEC than those of CD 1 and CD 2, their standard 
deviation was smaller than that of CD 1. They maintained 
a mean recovery ratio value of around 40% and showed a 
similar TDS concentration to those of CD 3 and CD 4.

3.3. Cleaning frequency for each element configuration

Fig. 4 describes the cleaning frequency for eight config-
urations over the simulation period of 12 months. Although 
the parameters for the cleaning criteria in the SWRO simula-
tion were set according to both SEC and permeate TDS con-
centration, SEC was the more important factor in deciding an 
appropriate time to clean reverse osmosis membranes in all 
configurations but CD 1. Membrane cleaning for CD 1 was 
first started 96 d into the simulation. CD 2 to CD 4 and ISD 
1 to ISD 4 were reached on the cleaning criteria over time. 
As expected, configurations with only high flux membranes 
required more frequent membrane cleaning. CD 1 and CD 2 
required cleaning more than three times a year. In contrast, 
cleaning for high rejection membranes and ISD all occurred 
twice a year. CD 4 showed the best performance among CD 
configurations in terms of the cleaning schedule. ISD 3 and 
ISD 4 had the longest operation periods between cleaning 

Table 1
Parameter values and target values used in internally staged de-
sign (ISD) optimization and simulation

Parameters Values

SWRO model operating conditions
Coefficient for TCFA, aT (K) 3,000
Coefficient for TCFB, bT (K) –4,500
Feed flowrate, Qf (m3/d) 300
Feed pressure, Pf (bar) 65
Efficiency of high-pressure pump, ηHP (%) 85
Efficiency of booster pump, ηBP (%) 85
Efficiency of ERD, ηERD (%) 95
Length of operation (d) 365

Membrane element properties

Spacer thickness, H (m) 8.64 × 10–4

Membrane channel width, w (m) 37
Membrane channel length, L (m) 1
Number of membrane elements in a pressure 
vessel

7

Hydrodynamic properties

Diffusion coefficient of solute, Db (m2/s) 0.36
Friction coefficient due to the membrane 
spacer, K (–)

14

Cake-layer properties of colloidal fouling

Porosity of the cake layer, e (–) 0.36
Particle density of the foulant, ρp (kg/m3) 1.4 × 103

Diameter of the foulant particle, dp (nm) 20
Colloidal fouling potential, kfp (–) 1.25
Foulant concentration (inlet), cf0 (mg/L) 10

Constraints for ISD optimization

Maximum permeate concentration (mg/L) 500
Maximum specific energy consumption (kWh/m3) 2.5
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Fig. 2. Graphical summary of the internally staged design (ISD) optimization algorithm depending on the seasonal variations of 
seawater quality; HR: high rejection membrane; HF: high flux membrane; a)ISD optimization algorithm using the pattern search 
algorithm developed in our previous study.

Table 2
ISD configurations for each month and common ISD configurations for all months

Month Monthly mean of TDS 
concentration (mg/L)

Monthly mean of 
temperature (°C)

Number of ISD configurations 
for each month

Number of common ISD 
configurations for all months

February 36,500 23.85 17

4

March 36,577 24.58 18
April 36,733 27.21 16
May 36,867 30.64 12
June 37,037 33.03 8
July 37,106 32.12 8
August 37,271 31.58 9
September 37,161 31.75 9
October 36,960 31.19 12
November 36,827 28.97 15
December 36,558 26.59 16
January 36,588 26.94 16
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(a) (b)

(c)

Fig. 3. Seawater reverse osmosis (SWRO) model simulation results for each element configuration: (a) specific energy consumption 
(kWh/m3), (b) recovery ratio (%), and (c) permeate TDS concentration (mg/L). The squares indicate the mean of each parameter. 
The error bars represent one standard deviation above and below the mean values.

Table 3
Conventional design (CD) and ISD element configuration from the ISD optimization algorithm

Element  
configuration

Element type

1 2 3 4 5 6 7

CD
CD 1 HF 1 HF 1 HF 1 HF 1 HF 1 HF 1 HF 1
CD 2 HF 2 HF 2 HF 2 HF 2 HF 2 HF 2 HF 2
CD 3 HR 2 HR 2 HR 2 HR 2 HR 2 HR 2 HR 2
CD 4 HR 1 HR 1 HR 1 HR 1 HR 1 HR 1 HR 1

ISD

ISD 1 HR 1 HR 1 HF 2 HF 2 HF 2 HF 2 HF 2
ISD 2 HR 1 HR 1 HR 1 HF 2 HF 2 HF 2 HF 2
ISD 3 HR 1 HR 1 HR 1 HR 1 HF 2 HF 2 HF 2
ISD 4 HR 1 HR 1 HR 1 HR 1 HR 1 HF 2 HF 2

Fig. 4. Cleaning schedules depending on the membrane configuration. Different colors indicate the operation periods of the SWRO 
process before membrane cleanings.
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operations by a wide margin. The difference between the 
second cleaning operations of CD 4 and ISD 3 was only 30 d.

4. Conclusions

This study was designed to evaluate the stability of ISD 
configurations under variations of feed water temperature 
and TDS concentration using seawater monitoring data. The 
optimization algorithm developed in a previous study was 
employed to derive element configurations in a pressure ves-
sel. The monthly means of seawater temperature and TDS 
concentration were employed to identify optimum ISD con-
figurations. The monitoring data were treated using a linear 
interpolation method to test the changes in the performance 
of SWRO on a daily basis. From this study, the following 
conclusions can be drawn:

• Four ISD configurations were generated by the opti-
mization algorithm. The combination of two types of 
membrane was enough to meet the design criteria under 
seasonal variations of seawater quality and temperature.

• High flux and high rejection membrane configurations 
had advantages with respect to recovery ratio and per-
meate water quality, respectively. However, ISD config-
urations had similar performance with both high flux 
and high rejection membranes. It is advantageous that 
the SEC of ISD configurations had similar performance 
to that of high flux membrane configurations, and they 
resembled the performance of high rejection membrane 
configurations in terms of permeate water quality.

• ISD configurations showed remarkable performance in 
terms of cleaning schedule compared to CD configura-
tions. ISD configurations were more stable to the sea-
sonal variations of seawater temperature and TDS con-
centration and met the performance requirements for the 
monthly mean values thereof.
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Symbols

A — Water transport coefficient, L/m2 h bar
aT — Temperature coefficient for TCFA, K
B — Salt transport coefficient, L/m2 h
bT — Temperature coefficient for TCFB, K
c — Concentration, mg/L
dp — Diameter of colloidal foulant, m
H — Channel height, m
k — Mass transfer coefficient
k* — Cake-hindered mass transfer coefficient
kfp — Colloidal fouling potential coefficient
kfriction — Friction coefficient
L — Channel length, m

M — Molecular weight, g/mol
md — Deposited foulant mass per unit area, kg/m2

N — Total number of membrane elements
Nion — Ionization number of the solution
p — Pressure, bar
Q — Volumetric flow rate, m3/d
R — Hydraulic resistance, m–1

Rg — Ideal gas constant, cm3 bar/mol K
T — Temperature, K
TCF — Temperature correction factor
Tref — Reference temperature, K
vw — Water flux, m3/m2 s
vs — Salt flux, kg/m2 s
w — Membrane channel width, m
WHP — Work done by the high-pressure pump, kW
WBP

ERD — Work done by booster pump, kW
x — Distance along the membrane channel

Greek symbols

m — Viscosity, Pa s
e — Porosity
ρ — Particle density of colloidal foulant
π — Osmotic pressure, bar
ξ —  Dummy variable for the integration of 

distance x
τ — Dummy variable for the integration of time t
ηHP — Efficiency of high-pressure pump, %
ηBP — Efficiency of the booster pump, %
ηERD — Efficiency of ERD, %

Subscripts

A — Water permeability
B — Salt permeability
c — Cake layer
f — Feed
m — Membrane wall
p — Permeate
s — Salt
w — Water
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