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a b s t r a c t
A hybrid electrode comprised of Pd and Co3O4 supported on Ni foam (Pd-Co3O4/Ni foam) was 
applied toward the dechlorination of 2,4-dichlorophenoxyacetic acid (2,4-D). The effects of the reac-
tion condition, such as Co3O4 and Pd loading, current density, initial concentration of 2,4-D, tem-
perature and dissolved anions, on the electrochemical dechlorination process were investigated and 
interpreted based on an indirect reduction mechanism via active atomic H*. The optimal Pd and 
Co3O4 loading were determined to be 0.47 and 0.51 mg/cm2, respectively. A highest current efficiency 
of 12.10% was obtained at a current density of 1.50 mA/cm2, an initial 2,4-D concentration of 50 mg/L 
and reaction temperature of 298 K, and the apparent activation energy of 2,4-D dechlorination by 
the Pd-Co3O4/Ni foam electrode was calculated to be 42.33 × 103 J/mol. In addition, dissolved anions 
such as S2−, SO3

2− and NO3
− suppress the catalytic activity, whereas HCO3

− and Cl− have a negligible 
effect on the reaction process. The Pd-Co3O4/Ni foam electrode can also be applied to the dechlo-
rination of 2,4-D in natural water bodies as well as other chlorinated organic compounds, such as 
chlorophenols.
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1. Introduction

The ecological risk of potential environmental pollutants 
has drawn a lot of attention over the last several decades 
[1–11], and particular attention has been paid to chlorinated 
organic compounds (COCs). 2,4-Dichlorophenoxyacetic 
acid (2,4-D) is a typical COC, which is widely used in agri-
culture and plants and has been detected in water bodies, 
even at concentrations of several mg/L in large reservoirs 
[1]. Due to its toxicological effects on living organisms [2], 
developing efficient methods for the removal of 2,4-D is 
highly desirable [3,4].

To remove 2,4-D from water, several degradation tech-
nologies have been reported, including biological [5,6] and 
advanced oxidation [8,9] processes. However, these meth-
ods usually suffer from several limitations, such as long 
processing time and secondary pollution. Electrochemical 
treatment technologies including anodic oxidation [12,13] 
and cathodic reduction methods [14–16], as a green pro-
cessing technology, have attracted enormous attention 
in the field of treating toxic and refractory contaminants 
in an aqueous solution. The cathodic reduction method 
has the advantages of rapid reaction rate, low appara-
tus cost, and mild reaction conditions. When used to treat 
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halogen-containing pollutants, a cathodic reduction can 
ensure the selective removal of halogen atoms from COCs 
without producing toxic by-products or adding any toxic 
chemicals [17–19].

Pd-, Au- and Ag-modified electrodes have extraordinary 
electrocatalytic activities for the reduction of COCs [20–22]. 
Among them, the noble metal catalysts using Pd have been 
extensively used because the multiple σ-bonding formed 
between H atoms and the d-orbitals of Pd are beneficial to 
the generation of active atomic hydrogen (H*) via the dissoci-
ation of H2 inside the Pd lattice [23,24]. However, because Pd 
is an expensive metal, efforts have been devoted to reducing 
the amount of Pd by adding other inexpensive conductive 
materials [18,25]. Our previous studies have confirmed that 
transition metal oxides such as Co3O4 show great potential as 
co-catalysts to reduce the amount of Pd while maintaining the 
catalytic activity and enhance the tolerance to catalyst inacti-
vation in the electrochemical dechlorination process [26].

In this work, a Pd and Co3O4 hybrid electrode supported 
on Ni foam (Pd-Co3O4/Ni foam) were prepared for the elec-
trochemical reductive dechlorination of 2,4-D. Ni foam was 
chosen as the electrode substrate due to its advantages of 
large specific surface area, porous structure and excellent 
electrical conductivity [27]. The effects of the Co3O4 and Pd 
loading, current density, initial concentration of 2,4-D, tem-
perature and co-existing dissolved anions in natural water 
were investigated. In addition, the possibility of applying 
the Pd-Co3O4/Ni foam electrode for dechlorinating 2,4-D in 
natural water bodies and chlorophenols was also studied.

2. Experimental section

2.1. Materials

Ni foam was purchased from Suzhou Jiashide Foam 
Metal Co. Ltd., China. PdCl2, (59–60% Pd), 2,4-D (≥99%), 
2-chlorophenoxyacetic acid (2-CPA, ≥98%), 4-chlorophenoxy-
acetic acid (4-CPA, ≥98%), phenoxyacetic acid (PA, ≥98%), 
2,4-dichlorophenol (2,4-DCP, ≥97%), 2-chlorophenol (2-CP, 
≥98%), 4-chlorophenol (4-CP, ≥98%) and phenol (≥97%) were 
purchased from Aladdin Reagent Inc., China. Nafion-117 
membranes were obtained from DuPont de Nemours & 
Co., USA. Ultrapure water obtained from a Millipore water 
purification system (Milli-Q) with a specific conductibility of 
≥18 mW/cm was used throughout the experiments.

2.2. Electrode preparation and characterization

The Pd-Co3O4/Ni foam electrode was prepared as pre-
viously described [26,28]. Typically, Ni foam with a fixed 
size (20 mm × 20 mm × 1.2 mm) was used as the electrode 
substrate, which was ultrasonically degreased and cleaned 
for 20 min and immersed in 0.5 mmol/L H2SO4 solution 
for 5 min to remove the surface oxidized layer. Afterward, 
the Ni foam was washed three times with ultrapure water. 
The Pd-Co3O4/Ni foam electrodes were synthesized via a 
two-step method of constant potential deposition and cal-
cination. First, the cleaned Ni foam was deposited with Pd 
and Co(OH)2 at a constant potential of −1.0 V vs. saturated 
calomel electrode (SCE) for 20 min in 40 mL of an aqueous 
solution containing 5 mmol/L Co(NO3)2 and 1 mmol/L PdCl2. 

Then, the deposited electrode was repeatedly washed with 
ultrapure water and dried under a flow of N2. Finally, the 
material was calcined in a tube furnace at 523 K for 120 min. 
When studying the optimum loading of Pd and Co3O4, the 
Co(NO3)2 concentration was varied from 1 to 50 mmol/L, and 
that of PdCl2 was varied from 0.5 to 2 mmol/L.

The Pd and Co3O4 loading on the electrodes was analyzed 
using inductively coupled plasma-optical emission spec-
troscopy (ICP-OES; Optima 7000DV, Perkin-Elmer Co. Ltd., 
USA). The surface morphology of the Pd-Co3O4/Ni foam elec-
trode was observed using field emission scanning electron 
microscopy (FE-SEM; ΣIGMA, Carl Zeiss, Germany). After 
ultrasonication in ethanol, the detailed morphology and ele-
mental distribution on the surface of the Ni foam electrode 
were determined using transmission electron microscopy 
(TEM; Tecnai G2 F30 S-Twin, Philips-FEI Corp., Netherlands) 
operated at 300 kV.

2.3. Experimental procedure and analysis

A double-chamber glass cell (4 cm × 11 cm) divided by 
a cationic exchange membrane (Nafion-117) was used for 
our electrochemical experiments. The cathode compartment 
contains 30 mL of 2,4-D and a 17 mmol/L Na2SO4 solution 
or other additional anions, which was continuously mixed 
by a magnetic stirrer during the electrochemical reaction. 
The anode compartment contains 25 mL of Na2SO4. The 
Pd-Co3O4/Ni foam working electrode and SCE reference 
electrode were placed in the catholyte. A Pt counter elec-
trode (2 cm × 2 cm) was placed in the anolyte. The electro-
lyte temperature was maintained at a pre-set temperature 
using a constant temperature water bath (THD-2015, Ningbo 
Tian Heng Instrument Factory, China). The electrochemi-
cal experiments were controlled using an electrochemical 
workstation (CHI760E, Shanghai Chen Hua Instrument 
Co., China). 0.4 mL of the sample was withdrawn from the 
catholyte at pre-set time intervals for further analysis.

The concentrations of 2,4-D, 2-CPA, 4-CPA, PA and phe-
nol were analyzed using high-performance liquid chroma-
tography (HPLC; 1200 series, Agilent Technologies, USA) at 
210 nm with an Agilent XDB-C18 column (150 mm × 4.6 mm). 
The mobile phase consisted of 60:40 methanol-water (0.2% 
H3PO4) at a flow rate of 0.8 mL/min. The injected volume for 
all samples was 5 μL and the column temperature was 298 K. 
Calculation of the current efficiency (CE) for 2,4-D dechlori-
nation is described in detail in the literature [15].

3. Results and discussion

3.1. Characterization of the Pd-Co3O4/Ni foam electrode

Fig. 1 shows the surface morphology of the Pd-Co3O4/
Ni foam electrode. The scanning electron microscopy image 
shows that the as-synthesized electrode possesses a 3D cross-
linked structure with hierarchical pore sizes (Fig. 1a) [29]. 
The hybrid electrode is composed of Co3O4 nanosheets and 
Pd nanoparticles, with Pd uniformly dispersed on the sur-
face of the Co3O4 nanosheets. The low-magnification TEM 
image demonstrates that all of the as-synthesized catalysts 
are loosely gathered together [30]. The size of the granular 
Pd is in the range of 20−70 nm with an average size of ~35 nm 
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(Fig. 1b). The high-resolution TEM image (Fig. 1c) shows a 
lattice spacing value of 0.225 nm, corresponding to the (111) 
plane of face-centered cubic Pd [31,32]. Moreover, lattice 
fringes with a spacing of 0.243 and 0.285 nm corresponding 
to the (311) and (220) planes of cubic Co3O4, respectively, are 
visible [33,34]. The selected area electron diffraction pattern 
is shown in the inset of Fig. 1c displays well-defined rings, 
which further confirm that the sample exhibits a polycrys-
talline nature. Fig. 1d shows the elemental distribution, in 
which the Co, O, and Pd signals are overlapped over the 
entire investigated area, thereby indicating that the Co, O 
and Pd elements were evenly deposited on the Ni foam. 
All these results verify that Pd and Co3O4 were successfully 
synthesized on the Ni foam surface.

3.2. Effect of the catalyst composition on the dechlorination 
of 2,4-D

To determine the role of the Co3O4 and Pd loading on the 
dechlorination of 2,4-D, we used seven types of electrodes 
for comparison. According to the literature and our previous 

work [15,18,19], four types of electrodes were prepared at 
Co(NO3)2 concentrations of 1, 5, 25 and 50 mmol/L, while 
keeping the PdCl2 concentration at 1 mmol/L. Three other 
electrodes were prepared at PdCl2 concentrations of 0.5, 1 
and 2 mmol/L while keeping the Co(NO3)2 concentration 
at 5 mmol/L. The Pd and Co3O4 content in these electrodes 
are summarized in Table 1.

As shown in Fig. 2a, the removal efficiency toward 
2,4-D initially increased and then decreased upon increas-
ing the Co3O4 loading. The optimum loading of Co3O4 was 
found to be 0.51 mg/cm2. This is because the generation and 
adsorption of atomic H* were accelerated by increasing the 
Co3O4 content. However, excessive Co3O4 loading will block 
the active sites of Pd and suppress the formation of active 
atomic H*.

Fig. 2b illustrates that at a Pd loading of 0.22, 0.47 and 
0.93 mg/cm2, the removal efficiency toward 2,4-D after 
60 min of electrolysis was 59.2%, 94.3%, and 98.8%, respec-
tively. Therefore, an excessive Pd loading on the electrode 
surface was not crucial for the improvement in the 2,4-D 
dechlorination efficiency. This because excessive Pd will 

 
Fig. 1. (a) FE-SEM, (b) TEM, (c) high-resolution TEM (Inset is the selected-area electron diffraction pattern) images, and (d) elemental 
mapping images of the Pd-Co3O4/Ni foam electrode.
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cause a reduction in the number of available sites as a result 
of agglomeration. This result was consistent with the find-
ings of our previous research [25].

3.3. Effect of the reaction parameters on the dechlorination 
of 2,4-D

3.3.1. Current density and pH

The applied current density has been proved to be 
a crucial parameter in controlling electron transfer and 
active atomic H* production via water electrolysis during 
electrochemical dechlorination [19,35], thereby directly 
influencing the removal efficiency toward 2,4-D. As shown 
in Fig. 3a, the removal efficiency toward 2,4-D increased as 
the applied current density increased from 0.50 to 1.50 mA/
cm2. Further increasing the current density resulted in a 
slight decrease in dechlorination efficiency. As shown in 
Fig. 3b, the dechlorination of 2,4-D followed a pseudo- first-
order kinetic model, which can be expressed as follows:

−








 = +ln

C
C

k t bt

0
obs  (1)

where t is the reaction time (min), kobs is the observed rate 
constant (min−1), b is a constant, and Ct and C0 are the con-
centration of 2,4-D (mmol/L) at time = t and 0, respectively.

The kobs value increased from 0.004 to 0.062 min−1, and then 
slightly decreased to 0.041 min−1 upon increasing the applied 
current in the range studied. This result may be attributed 
to the fact that the hydrogen evolution reaction (HER) can 
be accelerated at high current density. Correspondingly, the 
generation of active atomic H* on the surface of the electrode 
was enhanced, which in turn boosts the electrochemical 
reduction of 2,4-D. However, in the case when the current 
density was increased to 2.50 mA/cm2, a large amount of H2 
gas was generated on the cathode surface, which impedes 
the removal of 2,4-D. Thus, a current density of 1.50 mA/cm2 
was selected as the optimum current density to ensure an 
improved dechlorination efficiency.

CE is an important factor for determining the num-
ber of electrons exhausted during the removal of 2,4-D. 
Fig. 3c shows the CE gradually increases to 5.50% with no 
peak value at a current density of 0.50 mA/cm2 during the 
reaction. In contrast, in the current density range of 0.75–
2.50 mA/cm2, the CE for dechlorination first increases and 
then decreases, and the maximum CE value was obtained 
at 30 min. This may be because active atomic H* is mainly 
consumed to reach an equilibrium between hydrogen in 
the solid solution phase (PdHx) and hydrogen in the metal 
hydride phase (PdHy) during the first 30 min. Consequently, 
HER was accelerated due to the low consumption of active 
atomic H* by the residual 2,4-D [25,36]. This can also be used 
to explain the result that a slightly decreased CE of dechlori-
nation was achieved when the current density was increased 
to 2.50 mA/cm2. In this work, the highest CE of 12.10% was 
got at a current density of 1.50 mA/cm2.

The pH is an important factor affecting electrochem-
ical dechlorination [37]. Consequently, the pH changes 
in the catholyte were monitored, as shown in Fig. 3d. The 
initial pH of the catholyte was 3.80, which was ascribed to 
the carboxyl group in the 2,4-D structure. Since the anodic 
and cathodic compartments are separated by a cation-ex-
change membrane. The catholyte rapidly becomes basic after 

Table 1
Pd and Co3O4 loading on the electrode analyzed using ICP-OES

Electrode Total loading on 
the electrode  

(mg)

Total loading 
on the electrode 

(mg/cm2)

Pd Co3O4 Pd Co3O4

1 3.76 0.64 0.47 0.08
2 3.76 4.08 0.47 0.51
3 3.76 22.40 0.47 2.80
4 3.76 31.04 0.47 3.88
5 1.75 4.08 0.22 0.51
6 7.45 4.08 0.93 0.51
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 Fig. 2. Effect of the (a) Co3O4 and (b) Pd loading in the Pd-Co3O4/Ni foam electrode on the dechlorination efficiency toward 
2,4-D. Experimental conditions: fixed Pd loading = 0.47 mg/cm2, fixed in (a) Co3O4 loading = 0.51 mg/cm2 in (b), initial 2,4-D 
concentration = 50 mg/L, applied current density = 1.50 mA/cm2, Na2SO4 = 17 mmol/L, and reaction temperature = 298 K.
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10 min of electrolysis because of the accumulation of OH− in 
the cathode compartment. Afterward, the pH value slowly 
increases. The final values were 11.47, 11.80, 12.25, and 12.47 
at current densities of 0.50, 0.75, 1.50, and 2.50 mA/cm2 over 
120 min of reaction, respectively. In general, a relatively low 
pH value favors the electrochemical hydrodechlorination 
process, according to the Nernst equation [25]. In this study, 
the poor catalytic activity of the Pd-Co3O4/Ni foam electrode 
observed during the beginning of the reaction was attributed 
to the establishment of a hydrogen adsorption equilibrium in 
the Pd lattice between PdHx and PdHy.

3.3.2. Initial 2,4-D concentration

To evaluate the effect of the 2,4-D concentration on the 
dechlorination process, we performed the electrochemical 
dechlorination experiment using different initial concen-
trations of 2,4-D (25, 50, 75, and 100 mg/L). Fig. 4a presents 
the typical carbon balance of 2,4-D dechlorination at an 
initial concentration of 100 mg/L. 2,4-D was observed to be 
almost completely transformed into the final product PA. 
The partially dechlorinated intermediate product 2-CPA 

was transiently formed at low concentrations before being 
completely dechlorinated and almost no 4-CPA was detected 
throughout the electrolysis. The total carbon mass, which 
represents the evaluation of the total molar amounts of 2,4-
D, 2-CPA, 4-CPA, and PA, remained stable during the entire 
dechlorination process. We can, therefore, conclude that the 
adsorption of the reactants and products on the electrode 
surface was negligible.

As shown in Fig. 4b, the 2,4-D concentration decreases 
significantly upon prolonging the reaction time. More than 
96.5% of 2,4-D was removed within 120 min. When the ini-
tial concentration was increased from 25 to 100 mg/L, the 
removal efficiency of 2,4-D was slightly reduced from 100% 
to 96.5%, and the 2,4-D dechlorination reaction followed a 
pseudo-first-order kinetic model (Eq. (1)). The kobs value for 
2,4-D by the Pd-Co3O4/Ni foam electrode decreased from 
0.068 to 0.030 min−1 when the initial concentration increased 
from 25 to 100 mg/L. However, the amount of 2,4-D removed 
increased upon increasing the initial 2,4-D concentration 
(Fig. 4d). This is because more 2,4-D can be transferred 
onto the electrode surface for dechlorination at a relatively 
higher initial concentration [38].
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Fig. 3. (a) Effect of the current density on the dechlorination of 2,4-D. (b) Pseudo-first-order fitting of the 2,4-D dechlorination 
process. (c) Current efficiency and (d) pH changes observed using the Pd-Co3O4/Ni foam electrode. Experimental conditions: 
Pd loading = 0.47 mg/cm2, Co3O4 loading = 0.51 mg/cm2, initial 2,4-D concentration = 50 mg/L, Na2SO4 = 17 mmol/L, and reaction 
temperature = 298 K.
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3.3.3. Reaction temperature

To understand the effect of the reaction temperature, 
we investigated the dechlorination of 2,4-D at temperatures 
ranging from 278 to 298 K, respectively. Considering that 
the temperature under normal conditions is 298 K [39], and 
wastewater has a temperature range of 5°C–25°C [40], the 
experiment was performed at <298 K. As shown in Fig. 5a, 
the removal efficiency of 2,4-D increased upon increasing 
the temperature from 278 to 298 K. Correspondingly, the 
kobs value increased from 0.018 to 0.062 min−1, which can 
be explained by the fact that the mass transfer of 2,4-D 
and production of active atomic H* were accelerated upon 
increasing the reaction temperature [41–43].

The Arrhenius equation was used to establish the rela-
tionship between the observed rate constant and tempera-
ture, which can be described using Eq. (2), as follows:

ln lnk A
RTobs
Ea

= −  (2)

where kobs represents the measured observed rate constant 
(min−1), A is the pre-exponential factor (min−1), Ea is the 

apparent activation energy (J/mol), R is the universal gas con-
stant and T is the absolute temperature (K).

A plot of lnkobs vs. 1/T resulted in a linear relationship 
with the slope and intercept equal to −Ea/R and lnA, respec-
tively, as shown in Fig. 5c. According to Fig. 5c, the Ea was 
calculated to be 42.33 × 103 J/mol [44,45].

3.3.4. Dissolved anions

The effects of various inorganic anions on the removal of 
2,4-D were investigated in an attempt to evaluate the possible 
application of the technique. It has been demonstrated that 
Pd may suffer from deactivation and poisoning due to the 
presence of reduced sulfur compounds and Cl− ions [46–49]. 
Fig. 6a shows that SO3

2− and S2− have a significantly negative 
effect on the catalyst activity. With 1 mmol/L SO3

2− or 1 mmol/L 
S2−, the activity of the catalyst can be significantly reduced. 
The removal efficiency of 2,4-D was reduced to 45.7% and 
~0.0% after 120 min of electrolysis. Poisoning by SO3

2− and S2− 
can be attributed to the adsorption of sulfur and the formation 
of Pd sulfide on the Pd surface [25,35,50]. Sulfur saturated 
Pd surface will hinder the passage of hydrogen atoms from 
the bulk to the surface as well as hydrogen adsorption inside 
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2,4-D using the Pd-Co3O4/Ni foam electrode. Experimental conditions: Pd loading = 0.47 mg/cm2, Co3O4 loading = 0.51 mg/cm2, 
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Pd lattice. The results also show that S2− inhibits the dechlo-
rination process more severely than SO3

2−. In contrast, the 
additional addition of 5 mmol/L Cl− showed no obvious neg-
ative effect on the dechlorination of 2,4-D. The Pd-Co3O4/Ni 
foam electrode exhibited good resistance to deactivation in 

the presence of Cl−, which can be attributed to the formation 
of palladium oxide on the electrode surface, which has been 
previously discussed in detail by our group [26,51].

HCO3
− and NO3

− can inhibit the dechlorination reaction 
by competing with Cl-containing contaminants to consume 
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Fig. 6. Effect of dissolved anions (S2−, SO3
2−, Cl−, NO3

−, and HCO3
−) on the dechlorination of 2,4-D using the Pd-Co3O4/Ni foam 

electrode. Experimental conditions: Pd loading = 0.47 mg/cm2, Co3O4 loading = 0.51 mg/cm2, initial 2,4-D concentration = 50 mg/L, 
Na2SO4 = 17 mmol/L, applied current density = 1.50 mA/cm2, and reaction temperature = 298 K.
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H2, as described in Eqs. (3) and (4) [50,52]. Thus, the effect 
of HCO3

− and NO3
− on the dechlorination of 2,4-D was also 

investigated, as shown in Fig. 6b. When 5 mmol/L HCO3
− 

was present in the solution, no significant negative effect 
on the dechlorination of 2,4-D was observed. This may be 
due to the relatively slow reaction rate between HCO3

− and 
H2 when compared with the dechlorination reaction in 

this case. However, the adverse effect of NO3
− could not be 

neglected due to the competing consumption of H2 (Eq. (4)). 
When the NO3

− concentration was 3 mmol/L, the removal 
efficiency toward 2,4-D reduced to 83.6% after 120 min.

HCO H HCO H OPd
23 2 2

− −+ ← → +  (3)
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Fig. 7. (a) Dechlorination of 2,4-DCP, 2-CP and 4-CP. (b) Pseudo-first-order fitting of the Pd-Co3O4/Ni foam electrode. The time 
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reaction temperature = 298 K.
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2 5 2 43 2 2NO H N OH H OPd
2

− −+ ← → + +  (4)

3.4. Application of the dechlorination process toward 
other pollutants

Organic pollutants in the aquatic environment have 
become a ubiquitous and serious problem caused by 
industrial, domestic and environmental influences [53,54]. 
To confirm whether the Pd-Co3O4/Ni foam electrode can 
dechlorinate other COCs, the electrochemical dechlorina-
tion of 2,4-DCP, 2-CP, and 4-CP was performed under the 
same experimental conditions. As shown in Fig. 7a, the 
rapid dechlorination of these chlorophenol compounds was 
achieved and the removal of 2,4-DCP, 2-CP, and 4-CP reached 
~100% after 120 min. After fitting with a pseudo-first- order 
kinetic model (Fig. 7b), the kobs values obtained for the 
dechlorination of 2,4-DCP, 2-CP and 4-CP on the Pd-Co3O4/
Ni foam electrode were 0.032, 0.034, and 0.055 min−1, respec-
tively. The final product of 2-CP and 4-CP electrochemical 
dechlorination only contained phenol (Figs. 7c and d). 
In comparison, the dechlorination of 2,4-DCP yielded a 
small amount of 2-CP accompanied with a large amount of 
phenol, and 4-PC could not be detected above the limit of 
determination, as shown in Fig. 7e. The facile removal of Cl 
from the 4-position compared to the 2-position was possibly 
due to the steric hindrance caused by the neighboring func-
tional groups, which was in accordance with that reported 
in the literature [55,56]. The total carbon mass before and 
after the reaction remained stable during the entire reac-
tion, providing evidence that the adsorption of the reactant 
or product on the electrode surface was negligible. These 
results demonstrate the excellent electroreduction ability of 
the Pd-Co3O4/Ni foam electrode towards other COCs.

3.5. Possible environmental application

We determined the applicability of the Pd-Co3O4/Ni foam 
electrode in a realistic water matrix, such as Hangzhou tap 
and river water. The initial 2,4-D concentration was adjusted 
to 2 mg/L. As shown in Fig. 8, approximately 83.6% and 
71.8% of 2,4-D were removed after 60 min of electrolysis in 
Hangzhou tap and river water, respectively. Therefore, the 
Pd-Co3O4/Ni foam electrode maintained its high dechlorina-
tion efficiency for pollutants in an actual water body.

4. Conclusions

In conclusion, the Pd-Co3O4/Ni foam electrode pre-
pared with a Pd loading of 0.47 mg/cm2 and Co3O4 load-
ing of 0.51 mg/cm2 showed the best composition towards 
the electrochemical dechlorination of 2,4-D. Our experi-
ments showed that the optimum utilization rate of active 
atomic H* was obtained at a current density of 1.50 mA/
cm2, an initial 2,4-D concentration of 50 mg/L and reaction 
temperature of 298 K. The Ea value was determined to be 
42.33 × 103 J/mol based on the temperature dependence. 
5 mmol/L HCO3

− and Cl– have a negligible effect on the 
dechlorination process. Nonetheless, a total of 1 mmol/L 
SO3

2−, 1 mmol/L S2− and 3 mmol/L NO3
− have a significant 

negative effect on the electrocatalytic dechlorination reac-
tion. The Pd-Co3O4/Ni foam electrode can also be applied 

to dechlorinate other chlorophenol compounds. The elec-
trocatalytic dechlorination of 2,4-D in a realistic water 
matrix showed that the Pd-Co3O4/Ni foam electrode has 
broad practical application prospects.
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