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a b s t r a c t
This research consists of a proposal of three methods that analyze the contribution of each oper-
ational variable in the prediction of the coefficient of performance of three different absorption 
systems aimed at reducing the independent variables for a faster and more efficient prediction. 
Methods considered in this study are correlation analysis, principal component analysis combined 
with correlation analysis, and Garson’s method. The experimental information includes (i) an absorp-
tion heat transformer with duplex components, (ii) an absorption single-state heat transformer, 
and (iii) a double-absorption heat transformer. For each case, the three methods were applied, the 
results were discussed in order to find the coincidences and discrepancies.
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1. Introduction

In the field of the engineering processes, the relationships 
between operational variables and performance of the system 
are frequent topic and analysis under discussion. Variables 
such as temperature, pressure, solution concentration, pH or 
mass flow are commonly assumed as independent variables 
in empirical models to find the predictor. The purpose of 
this research is to propose three methods which analyze the 
contribution of each operational variable with the objective 
of reducing the number of variables for a faster and more 
efficient prediction of the coefficient of performance for the 
experimental heat transformer under study. A comparative 
study considering three methods is done. These methods 
are (i) correlation analysis, (ii) principal component analysis 
(PCA) with correlation analysis, and (iii) sensibility analy-
sis on artificial neural network (ANN) model based on the 
Garson’s method. For this purpose, these methods were 

applied to the experimental database of three absorption 
heat transformers aimed at finding the most optimal (signif-
icant) operational variables in the coefficient of performance 
prediction of the systems.

A correlation matrix analysis was presented as an option 
to know the degree of correlation between the independent 
variables with the prediction. Kachigan [1] describes the 
correlation matrix as many correlation coefficients arranged 
in a systematic and orderly fashion. In this way, Ramírez-
Hernández et al. [2] presented the modeling of an absorp-
tion heat transformer with duplex components based on a 
correlation matrix to select the best independent variables to 
predict the coefficient of performance.

About the PCA, Karytsas and Choropanitis [3] proposed 
the PCA to categorize the main diffusion barriers of the 
ground source heat pump system routed in the domestic 
sector. The objectives of a PCA were (a) to extract the most 
important information from the data, (b) to compress the 
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size of the data keeping only the essential information, (c) to 
simplify the description of the dataset, and (d) to analyze the 
structure of the observations and the variables. Popescu et 
al. [4] used the multivariable statistical technique commonly 
known as PCA for the extraction and interpretation of the 
systematic variance in spruce wood samples submitted to 
several thermal and hydrothermal conditions. Baklouti et al. 
[5] presented the Iterated Robust Kernel Fuzzy PCA as an 
improvement of the PCA assuming a more accurate multi-ob-
jective function to minimize the errors, optimize the robust-
ness to outliers and improve the memory efficiency. The PCA 
is presented by Lefkir et al. [6] to reduce the dimensionality 
of the historical database to be used in the wastewater treat-
ment modeling; the excess removal of organic pollution and 
the excess nitrates product in the performance of the purifica-
tion process were identified with significant importance with 
the PCA method.

The ANNs have been used for modeling of thermal, 
chemical process and heat exchanging equipment. The anal-
ysis proposed by Garson [7] weighs the relevance of every 
one of the operational variables considering them as input 
neurons in the architecture of the ANN model. El-Hamzaoui 
et al. [8] trained an ANN model to predict the chemical 
oxygen demand (COD) removal during the degradation of 
alazine and gesaprim commercial herbicides under various 
experimental conditions, the Garson’s method was applied 
to ANN model showing that the reaction time and herbicide 
concentration were the input variables with more significant 
importance in the prediction of COD. Díaz-Gómez et al. [9] 
developed an ANN model to predict the global solar radi-
ation based on meteorological environmental data about 
Cuernavaca city, Mexico. The authors found that at the time, 
the atmospheric pressure and the temperature were variables 
that affect the global solar radiation as predicted using the 
Garson’s method.

The objective of this research study is the absorption heat 
transformer. A heat driven heat transformer, also known as 
a reversed absorption heat pump or temperature amplifier, 
is described by Siqueiros and Holland [10]. The unique abil-
ity of heat transformer is to produce a high-temperature 
stream depending on heat supply in the generator QGE and 
evaporator QEV, as a consequence the heat is rejected in the 
condenser. The coefficient of performance is the relationship 
between the heat obtained in the absorber QAB divided by 
the total amount of heat supplied as follows:

COP AB

GE EV

=
+

Q
Q Q

	 (1)

The novelty of this research is to present the correlation 
analysis, PCA with correlation analysis, and Garson’s method 
to find the significant operational variables which affect the 
prediction of the coefficient of performance in three exper-
imental absorption heat transformers. The results and dis-
cussion will help us to trace the optimal variables on which 
we must focus our attention on each of the systems studied 
from a new perspective. In addition, to focusing effort on the 
variables which must be measured for special significance. 
It is important to notice that there is no previous research 
where the PCA method has been used in experimental 
data of the absorption heat transformer.

2. Methods to select variables used in this research

In this section, to select variables, three methods are 
presented: (1) correlation matrix, (2) PCA, and (3) sensitivity 
analysis based on Garson’s method.

Denote by ℝn is the Euclidean space n is the dimensional, 
Cov(X,X) is the matrix covariance of the random variable X, 
Var(X) is the variance of the random variable X, v1·v2 is the 
inner product of vectors v1 and v2, XT denotes the transpose 
of the vector X, and A–1 inverse of the matrix A.

2.1. Method 1: correlation matrix

Pearson correlation coefficient, also known as r or R is 
a measure of lineal dependence between random variables. 
Let xi, xj be random variables (i,j = 1,2,…,n), r was defined in 
Kachigan [1] as:

r x x
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It has values in the interval (−1,1), that is, −1 ≤ r(xi,xj) ≤ 1 
with r(xi,xj) = 0 only if Cov(xi,xj) = 0. Table 1 shows the inter-
pretation of Pearson correlation coefficient according to the 
calculated value.

When the correlations that exist among several variables 
need to be studied, for instance, x1,x2,…,xn, the correlation 
coefficient is calculated between each pair of variables (xi,xj), 
i,j  =  1,2,…,n. Since there are many coefficients, it is conve-
nient to arrange the coefficients in a systematic and orderly 
fashion. This is done in the form of the correlation matrix, 
Kachigan [1] for more details.

Remark 1: To select those variables that are highly correlated 
with each other, the correlation analysis is used to reduce the 
number of variables, that is, if in principle there are n original 
variables, x1,x2,...,xn, the correlation analysis allows us to have 
a smaller number of variables (x5,x8,x4, three for example).

2.2. Method 2: principal components analysis combined with 
correlation analysis

This subsection briefly describes the PCA, as well as, the 
definitions of the linear algebra concepts used in the PCA. 
Our main sources are Jolliffe [11] and Grossman [12]. Let 
X = (X1,X2,…,Xn)T be a random variable n is the dimensional 
and let A = Cov(X,X).

Definition 1: The first principal component is defined 
as a lineal combination of the variables X1,X2,...,Xn, that is 
Z1  =  v11X1  +  v12X2  +  …  +  v1nXn, or in matrix form Z1  =  v1

TX, 
v1  =  (v11,v12,…,v1n)T  ∈  ℝn satisfying that Var ( )Z

v n1 = max


 
{Var(vTX) : v·v = 1}.

Remark 2: To obtain the first principal component observe 
that:

(a)
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Thus, to find the first principal component by Eq. (1), 
the following optimization problem has to be solved:

max ,

.
v

T
n v

v v


Av{ }
× =





 1
	 (4)

(b) The optimization Eq. (4) can be solved using the Lagrange 
multipliers technique as follows:

L v v v v L
v
vA vT( ) = − × −( )× ∂

∂
− =Av λ λ1 11 2 2 0. 	 (5)

Eq. (5) implies that the vector v ∈ ℝn which maximizes 
Eq. (4) satisfies Av = λ1v, so, v is an eigenvector of the cova-
riance matrix A and the scale factor λ1 is the eigenvalue 
corresponding to that eigenvector.

(c) On the other hand, note by Eq. (3) and (b) that 
Var(Z1) = v1

TAv1 = λ1v1·v1=λ1.
(d) Finally, by parts (b) and (c) the first principal component, 
Z1, is developed using the highest eigenvalue of the covariance 
matrix and the eigenvector associated to this eigenvalue.

Definition 2: The second principal component is defined 
as a lineal combination of the variables X1,X2,…,Xn that is 
Z2  :=  v21X1  +  v22X2  +  …  +  v2nXn, or in matrix form Z2  =  v2

TX, 
v2  =  (v21,v22,…,v2n)T  ∈  ℝn satisfying that Var(Z2)  = Var ( )Z

v n1 = max


{Var(vTX)  : v·v  =  1 and v·v1  =  0}, where v1 is the vector that 
maximize the variance of the first principal component, Z1.

Proceeding similarly to the development of the first prin-
cipal component (Remark 2), it is obtained that to find the 
second principal component, the following optimization 
problem has to be solved.

max
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Using the Lagrange multipliers technique to solve the 
optimization Eq. (4) it gets L(v) = vTAv – λ(v·v – 1) – µ(v·v1).

∂
∂

= − − =
L
v

v v2 2 01Av λ µ , 	 (7)

multiplying the equality Eq. (7) by v1
T to get 2AvTv1

T – µv1v1
T = 0 

implying that µ = 0 since by Eqs. (4) and (6) vTv1
T = v1·v = 0 

and v1v1
T = v1·v1 = 1. So, substituting µ = 0 in Eq. (7) it is con-

cluded that the vector which maximizes the variance of the 
second principal component, Z2, satisfies Av  =  λv, that is, 
v is again, an eigenvector of the covariance matrix A and 
the scale factor λ is the eigenvalue corresponding to that 
eigenvector. Moreover, proceeding similarly as in the case 
of the first principal component, it can obtain Var(Z2) = λ.

Remark 3: Notice that to find the first and second prin-
cipal components, the optimization problems which had 
to be solved were Eqs. (4) and (6). The vectors that maxi-
mize these problems are the eigenvectors of the covariance 
matrix associated with the eigenvalues of this matrix. Similar 

arguments to the ones presented above, allows us to con-
clude that the principal components are linear of the eigen-
vectors of the covariance matrix. That is if λ1 ≥ λ2 ≥ ... ≥ λn are 
the eigenvalues of the covariance matrix ordered from higher 
to lower and v1,v2,...,vn are eigenvectors associated with the 
eigenvalues, then the principal components are Z1  =  v1

TX, 
Z2  =  v2

TX,...,Zn  =  vn
TX. Moreover, Var(Z1)  =  λ1, Var(Z2)  =  λ2, 

Var(Z3) = λ3,...,Var(Zn) = λn.
Variability percent: Let X  =  (X1,X2,…,Xn)T be the original 

variables and Z1,Z2,…,Zn is the principal component. It is 
known that Var(Xi) – Cov(Xi,Xi).

So,

i

n

iX A A X X
=
∑ ( ) = ( ) = ( )

1

Var Trace with cov , 	 (8)

Now, let C  =  (v1,v2,...,vn) be the matrix of the eigenvec-
tors associated to the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn. Then, by 
Theorem 2 in Grossman [12], D  := C−1AC  = CTAC since C is 
orthogonal, (C−1 = CT). Thus, using the properties of trace oper-
ator it gets Trace(D) = Trace(CTAC) = Trace(ACTC). Therefore,

Trace Trace Trace

since isorthogonal

D C A

C C C I

ACT

T

( ) = ( ) = ( )
=, . 	 (9)

On the other hand, by definition of the operator trace it 
gets, Trace(D) = ∑n

i=1λi, by Remark 3 Var(Zi) = λi, this implies 
that:

Trace VarD Z
i

n

i
i

n

i( ) = = ( )
= =
∑ ∑

1 1
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So, by Eqs. (8)–(10), it is concluded that the variability 
of the original variables X  =  (X1,X2,...,Xn)T is equal to the 
variability of the components Z1,Z2,...,Zn. Consequently, the 
variability percent explained by the first principal compo-
nent and the variability percent explained by r principal com-

ponents are given by λ
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In practice, having N original variables in the beginning, 
X1,X2,…,Xn the PCA allows us to have a smaller number of 
variables (components, Z1, Z2, Z3 for instance) that collects a 
large percentage of the total variability. This way, the PCA 
reduces the data dimension. The correlation coefficient 
between each principal component and the original variables 
are calculated. Those with the highest correlation coeffi-
cient from the first principal component will be the optimal 
variables.

Table 1
Values Pearson correlation coefficient

r(xi,xj) = 1 Indicates a total positive linear regression
r(xi,xj) = 0 Suggests nonlinear regression
r(xi,xj) = –1 Corresponds a total negative linear regression
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2.3. Method 3: sensitivity analysis based on Garson’s method [10]

An ANN is one of the most effective methods for the 
model physical phenomenon and engineering data analysis. 
Commonly, a series of impulses feed interconnected neu-
rons in the input and hidden layers to predict a target. The 
magnitude of the impulse is related to the importance and 
variability of the input. The method can be analyzed from 
this perspective:

y x x xx N= …( )ANN 1 2 3, , , , , 	 (11)

where y, x and N are the dependent variables, independent 
variables and the number of input operational variables, 
respectively. ANN averages the mathematical relationship 
usually referred to as ANN architecture. Mathematical func-
tions such as logarithmic sigmoid, hyperbolic tangent sig-
moid and radial are commonly applied in the hidden layer 
of an ANN architecture and a linear function is suggested 
in the output layer by several authors. The ANN training is 
the iterative procedure to obtain appropriate weights and 
bias to estimate the independent variable, along with it, an 
optimization algorithm is needed. Several works describe 
the following steps for ANN training:

•	 First, gather an experimental database based on the 
operational variable range of the available equipment. 
Not registered operational variables must be ruled out.

•	 Second, define the percentage of data for training and 
validation, also calculate all necessary parameters: archi-
tecture, number of hidden layers, optimization algo-
rithm, activation function, number of iterations and, the 
most important factor, the number of hidden neurons 
per layer if possible. Each element of the hidden layers 
is connected to each input neuron through the weight 
matrix.

•	 Finally, calculate the difference between the target and 
network output, which is the error and it should be 
minimized.

The weight and bias matrices are the results of the train-
ing process in the ANN. The mathematical expression of the 
ANN model considering a tangent sigmoid transfer func-
tion and a linear function in the hidden and output layers is 
given by:
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where S is the number of neurons in the hidden layer, Wi is 
the weights in the input-hidden layer, b1s is the j-th of bias 
in the hidden layer, W0 are the weights in the hidden output 
layer, N is the input-neuron number, l is the output-neuron 
number and b2l is the k-th value of bias in the output layer.

As an example, for the specific case where: N = 4, S = 3, 
for the hidden layer and hyperbolic tangent sigmoid respec-
tively, and in the output layer the linear function is selected, 
l = 1 and using Eq. (12) the following model is obtained:

y
e e e

W W W
W=

+
+

+
+

+












− +( ) ( ) ( )

( )2
1 1 1

0 1 1 0 2 1 0 3 1
0 1 11 2 3

, , ,
,φ φ φ

WW W b0 2 1 0 3 1 2, ,( ) ( )+( ) +
	

	 (13)

where φ1  =  –2(Wi(1,1)x1  +  Wi(1,2)x2  +  Wi(1,3)x3  +  Wi(1,4)x4  +  b11), 
φ2 = –2(Wi(2,1)x1 + Wi(2,2)x2 + Wi(2,3)x3 + Wi(2,4)x4 + b12), φ3 = –2(Wi(3,1)x1 + 
Wi(3,2)x2  +  Wi(3,3)x3  +  Wi(3,4)x4  +  b13) or in matrix form 
φ = −2WiX + b1, with
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This model should consider that the independent vari-
ables x1, x2, x3 and x4 have normalized values ranging from 
–1 to 1 and the dependent y variables from 0 to 1.

The validation process is the procedure in which the 
experimental results are paired with the ANN approach. A 
statistical tool such as a determination coefficient higher than 
0.98 and ordinary linear regression analysis was reported to 
confirm the goodness of fit. As a result of the training and 
validation steps, an ANN model is presented.

Sensibility analysis: Garson [7] proposed a method to esti-
mate the degree of relevance Ixj  of each input operational 
variable xj in an ANN model based on the weights matrix, 
Wi and W0.

Garson’s method uses the absolute value of each weight-
ing coefficient (Wi,W0), ruling out their negative characteristic 
and keeping only their magnitude, then the bias values b1 
and b2 are not considered. Following the method described 
by Garson [7], the Ixj  is obtained as the product of the abso-
lute value of the input layer per its respective weight coeffi-
cient in the hidden layer as following.
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The methods described above are given in Fig. 1.

3. Applications

In this section, three systems are studied (1) absorp-
tion heat transformer with duplex function compounds by 
Morales et al. [13], (2) a single-state absorption heat trans-
former by Hernández et al. [14], and (3) a double-absorption 
heat transformer by Rivera et al. [15]. The methods previ-
ously described are applied to select the minor number of 
variables that predict the best coefficient of performance for 
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these systems. To emphasize the discussion, the calculations 
related to the methods were synthesized in Tables A1–A13.

3.1. Absorption heat transformer with duplex function compounds

Fig. 2 shows a schematic diagram of an experimental 
absorption heat transformer with the purpose of water puri-
fication. Previous works by Ramírez-Hernández et al. [2], 
Morales et al. [13] and Martínez-Martínez et al. [16] reported 
theoretical and experimental studies of this equipment to 
predict the coefficient of performance. The system consists of 
two duplex units: generator–condenser and absorber–evapo-
rator, these were built to reduce the heat and fluid-transport 
losses. Each equipment consists of concentric helical coils fed 
by a distributor to increase the heat transfer. Temperature, 
pressure, and mass flow sensors were installed in the shell 
of both duplex equipment to save all experimental data pos-
sible. The concentration of the bromide–lithium solution 
was registered as the indirect variable with the help of the 
refractive index. Table 2 shows a summary of the experi-
mental database of absorption heat transformer with duplex 
components.

3.1.1. Method 1: correlation matrix

The correlation matrix of the operational variables from 
the studied system is obtained and those variables with the 
highest correlation coefficients are selected. As can be seen 
in Tables A1 and A2, the variables that are highly correlated 
with each other are x1 with x2, x3, x5, x8; x2 with x4 and x5; x4 
and x5; x5 and x8; x6 and x7; x12 and x13. So, the set of opti-
mal variables for this system could be {x1, x2, x3, x4, x5, x6, x7, 
x8, x12, x13}.

3.1.2. Method 2: PCA combined with correlation analysis

PCA is used to select a set of variables. To do this, first, 
the covariance matrix is calculated; second, the eigenval-
ues from this matrix and its eigenvectors associated are 
obtained; and, third, the principal components are defined. 
Tables A3 and A4 show the covariance of each pair (xi,xj), 
i,j = 1,2,...,16. The covariance describes the way two random 
variables vary together. Since the variance is a special case 
of covariance, Cov(xi,xi) = Var(xi), the diagonal of the covari-
ance matrix contains the variances of the variables xi.

Fig. 1. Methods to select variable flow diagram.
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Now, the eigenvalues of the covariance matrix are cal-
culated in order from the highest to the lowest (Table A5). 
The eigenvectors associated with the eigenvalues given in 
Table A5 are presented in Tables A6 and A7. These eigenvec-
tors satisfy the condition v1·v1 = 1 and v1·v2 = 0, that is, have 
a norm of 1 and are orthogonal to each other.

According to the theory presented in section 1, the prin-
cipal component are linear combinations from the original 
variables x1,…,x16 where the coefficients of each linear com-
bination are the inputs of the eigenvectors, Definitions 1, 2 
and Remark 3. For instance, the first and second principal  
components are Z1 = 0.3902x1 + 0.3851x2 + 0.3177x3 + 0.4702x4 +  
0.4865x5 + 0.0243x6 + 0.0385x7 + 0.3387x8 – 0.0109x9 – 0.0038x10 +  
0.0113x11 – 0.1466x12 – 0.0476x13 – 0.0002x14 – 0.0001x15 – 0.00x16,  
Z2 = 0.2982x1 + 0.2095x2 + 0.135x3 + 0.359x4 + 0.0764x5 + 0.3250x6 +  
0.6451x7 + 0.3528x8 + 0.0394x9 – 0.2002x10 – 0.225x11 – 0.1516x12 –  
00498x13 + 0.0007x14 – 0.00x15 – 0.0003x16.

Table A8 shows the information on the principal com-
ponents. The first row corresponds to the first principal 
component, the second row corresponds to the second 
principal component and so on. The determination of the 
principal components number to be retained is, in part, 
arbitrary and remains under the judgment of the researcher. 
One criterion is to retain principal components that collect 
a large percentage of the total variability. In our case study, 
the principal components retained are Z1, Z2, Z3 and Z4 since 
the percentage of the total variability retained by these 4 
components is 96.05%, see Table A8. In this way, the PCA 
reduces the dimension of the data since the N original vari-
ables, x1,x2,...,xn are reduced to a smaller number of variables 
(components), Z1, Z2, Z3, Z4.

Tables A9 and A10 show the correlation coefficient 
between each principal component and the original vari-
ables. The selected variables will be those that have the high-
est correlation with the first principal component. As can be 
seen in Tables A9 and A10 the variables set selected with the 
PCA are {x1, x2, x3, x4, x5, x8, x12}.

3.1.3. Method 3: a sensitivity analysis based on 
Garson’s method

Morales et al. [13] presented a training and validation 
of an ANN to model the coefficient of performance for 

Fig. 2. Schematic diagram of absorption heat transformer with duplex compounds by Ramírez-Hernández et al. [2], the thermal load 
design is 2 kW, the approximate dimensions of system are 2.3 m × 2 m × 2 m.

Table 2
Heat transformer with duplex compounds. Relationship 
between mathematical and operational variables

Mathematical label Temperatures (°C) Operation range

x1 TinGE 65.61–85.68
x2 TinGE–AB 56.25–78.09
x3 ToutAB–GE 77.98–97.05
x4 TinAB–GE 50.70–78.82
x5 ToutGE–AB 57.33–81.38
x6 TinCO 13.38–20.20
x7 ToutCO 16.02–29.26
x8 TinVE 66.61–86.03

Concentrations (%)
x9 XinAB–GE 51.67–53
x10 XoutAB 47.68–57.06
x11 XoutGE 51.55–58.14

Pressure (in Hg)
x12 PAB 29.73–82.39
x13 PGE 4.68–95.99

Mass flow (kg/s)
x14 FMGE 0.0721–0.1541
x15 FMEV 0.0727–0.1445
x16 FMAB 0.0049–0.0199
Y COP 0.1–0.36



155B. Escobedo-Trujillo, D. Colorado / Desalination and Water Treatment 183 (2020) 149–166

absorption heat transformer with duplex components. The 
ANN model consists of 16 operational variables in the input 
layer of architecture, 7 neurons in the hidden layer to pre-
dict the coefficient of performance as the output layer. The 
weights and bias obtained by the authors are shown in Table 
A12. According to the procedure described in the previ-
ous section Sensitivity analysis based on Garson’s method, 
Garson [7], the relative importance of each variable was cal-
culated with Eq. (14) and shown in Fig. 3. The most import-
ant variables selected with the sensibility analysis consider-
ing percent of relative importance mayor to 7% are {x1, x4, x9, 
x11, x12, x13}.

3.2. Comparison of the methods and discussion

The variables selected by the three methods are presented 
in Tables 3 and 4. In order, the coefficient of performance 
prediction of the absorption heat transformer with two-du-
plex components, the authors in Ramírez-Hernández et al. 
[2] developed four polynomial models. The best polyno-
mial model included inlet temperature in the generator, 
absorber–generator, and evaporator; output temperature in 
the absorber–generator and pressure in the generator, that is, 
{x1, x4, x5, x8, x13}. The polynomial model showed an excellent 

correlation between experimental and simulated values of 
the coefficient of performance with a coefficient of determi-
nation R2 ≥ 0.9910. As can be seen in Table 3.

•	 PCA predicts four of the five variables used in the best 
polynomial model developed in Ramírez-Hernández et 
al. [2], but the other three polynomial models combine 
exactly the seven variables selected by the CPA;

•	 with respect to the correlation matrix, the selected vari-
ables set contained every variable used in the polynomial 
models developed in Ramírez-Hernández et al. [2]. This 
is because the authors used the correlation matrix vari-
able selection;

•	 the selected variables set by sensibility analysis con-
tained three variables used by the authors in Ramírez-
Hernández et al. [2].

On the other hand, in the work Martínez-Martínez et al. 
[16] the authors developed ANN models in order the coef-
ficient of performance prediction of the absorption heat 
transformer with two-duplex components. The best ANN 
model uses the variables {x1, x2, x4, x5, x8, x12}. Observing again 
Table 9, we can notice that:

•	 the PCA predicts all variables used in the best ANN 
model developed in Martínez-Martínez et al. [16];

•	 the correlation matrix also contains all the variables used 
in the best ANN model developed in Martínez-Martínez 
et al. [16], but this set is bigger than the set obtained 
with PCA;

•	 sensibility analysis only predicts three of the variables 
used in the best ANN model.

Finally, we can conclude that PCA is the best option 
to select variables since it also uses the correlation matrix 
method.

According to Table 4, the variables selected in principal 
components emphasized the absorption–desorption process 
using the temperature at the inlet and outlet of components. 
The temperature at the inlet of the evaporator, which shows 
the level of waste heat incorporated into the system, and 

Fig. 3. Heat transformer with duplex compounds. Relative 
importance of input variables.

Table 4
Selected variables by the three methods for the absorption heat transformer with duplex function compounds

Methods Results

Principal components TinGE, TinGE–AB, ToutAB–GE, TinAB–GE, ToutGE–AB, TinEV, PAB

Correlation matrix TinGE, TinGE–AB, ToutAB–GE, TinAB–GE, ToutGE–AB, TinCO, ToutCO, TinEV, PAB, PGE

Sensibility analysis TinGE, TinAB–GE, XinGE–AB, XoutGE, PAB, PGE

Table 3
Selected variables by three methods

Methods Results

Principal components x1, x2, x3, x4, x5, x8, x12

Correlation matrix x1, x2, x3, x4, x5, x6, x7, x8, x12, x13

Sensibility analysis x1, x4, x9, x11, x12, x13
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the pressure in the absorber–evaporator was signaled with 
significant importance. Referencing the variables selected 
by the correlation matrix, the condenser and generator con-
tributed to the prediction of the coefficient of performance. 
Finally, the sensibility analysis changes the perspective, it 
includes the concentration of the lithium–bromide solution 
in the base of principal components. It is worth remembering 
that the concentration is a function of pressure and tempera-
ture as X  =  f(P,T), therefore the coefficient of performance 
can be predicted as the help of indirect variables.

If we use the coincidences between the results of the 
methods, it obtains {TinAB–GE,PAB}. This could mean that 
the absorption carried out in the absorber–evaporator 
contributes significantly to the prediction of the coefficient 
of performance and curiously at a point where the risk of 
crystallization is considerable.

3.3. Single-state absorption heat transformer

Fig. 4 shows the schematic diagram for a single-state 
absorption heat transformer. Hernández et al. [14] and 
Escobedo-Trujillo et al. [17] presented the experimental and 
theoretical development of absorption heat transformer 
from coefficient of performance modeling, control, and sta-
tistical analysis. The entire system consists of an absorber, 
an evaporator, a generator, and a condenser. The system was 
designed for the water purification process taking advan-
tage of that useful heat quantity in the absorber [18]. The 
experimental data provides from the portable design of 
the water purification process integrated into a single-state 
absorption heat transformer with energy recycling by [19]. 
Bromide–lithium solution flows between the absorber and 
generator; while water was used as a working fluid. Heat 
load was supplied in the generator and evaporator from 
the auxiliary service system. Transitory and steady states 
were taken into account for each initial concentration of the 
Bromide–lithium solution. After 2 h from start-up, data was 
collected for 4 h. Experiments were carried out at eight dif-
ferent initial conditions with at least two replicates. Then, 
a database of 6,786 samples was obtained. Table 5 shows a 
summary of the experimental database obtained, the posi-
tion of each measurement in the system according to Fig. 4 
and the mathematical variables used in this analysis.

3.3.1. Method 1: correlation matrix

The variables that are highly correlated with each other 
are x1 with x3, x5; x3 with x1, x5, x6; x4 with the variables x6, x15, 
x12, x13; x6 with x3, x4; x7 is highly correlated with x8; x10 and x2; 
x11 with the variables x4, x12, x13, x14, x16; x12 with x4, x11, x13, x14, 
x16; x13 with x4, x11, x14, x16; x14 with x11, x12, x13, x16; x16 with the 
variables x11, x12, x13, x14. Coefficient of performance is highly 
correlated with x4, x6, x12, x13, x14. So, the set of selected vari-
ables for this system using the correlation matrix (r ≥ 0.4) is 
{x1, x2, x3, x4, x5, x6, x11, x12, x13, x14, x16}.

3.3.2. Method 2: principal components analysis combined 
with correlation analysis

According to the theory presented in section 1, the prin-
cipal components are linear combinations from the original 
variables x1,...,x16 where the coefficients of each linear com-
bination are the inputs of the eigenvectors, see Definitions 1, 
2 and Remark 3. For instance, the first and second principal 
components are: Z1 = 0.0555x1 + 0.0378x2 + 0.0723x3 + 0.0260x4  
+ 0.0555x5 + 0.0211x6 + 0.0206x7 – 0.0240x8 – 0.9896x9 + 0.0378x10 + 
0.0312x11  +  0.0328x12  +  0.0328x13  +  0.0291x14  –  0.0175x15  + 
0.0041x16, Z2  =  –0.1160x1  +  0.5300x2  –  0.2896x3  –  0.1899x4  –  
0.1160x5 – 0.0644x6 + 0.4395x7 + 0.0532x8 + 0.0035x9 + 0.5300x10 – 
0.1235x11 – 0.1339x12 –0.1339x13 – 0.0646x14 – 0.1895x15 + 0.0079x16 + 
0.0079x16.

Table A12 shows the information on the principal com-
ponents of the system studied in this section. As in the 
previous application, the first row corresponds to the first 
principal component, the second row corresponds to the 

Fig. 4. Schematic diagram of single-state absorption heat trans-
former the experimental COP has range from 0.2 to 0.39.

Table 5
Range of experimental operating conditions used to obtain the 
coefficient of performance values

Temperatures 
(°C)

Operation 
range

Instrumentation 
label (Fig. 4)

Mathematical 
label

TinGE–AB 76.29–91.53 T1 x1

TinEV–AB 74.56–89.93 T2 x2

ToutAB–GE 84.31–98.27 T3 x3

TinAB–GE 74.99–92.58 T4 x4

ToutGE–CO 76.29–91.53 T5 x5

ToutGE–AB 77.03–83.89 T6 x6

TinCO 40.37–65.03 T7 x7

ToutCO 26.77–33.79 T8 x8

TinEV 28.52–85.33 T9 x9

ToutEV–AB 74.56–89.93 T10 x10

Concentrations (%)
XinAB 51.66–55.36 X1 x11

XoutAB 50.75–54.36 X2 x12

XinGE 50.75–54.36 X3 x13

XoutGE 53.16–56.07 X4 x14

Pressure (in Hg absolute)

PAB 7.00–11.50 P1 x15

PGE 19.00–21.10 P2 x16
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second principal component and so on. The variability 
percentage caught by the first three principal components 
is 81.33%. Depending on the research it is possible to work 
only with these three components or add another one to 
increase the variability percentage caught, for instance, with 
six principal components, the variability percentage caught 
97.32%. In this application, only the first principal compo-
nent was treated. Those variables with the highest correla-
tion coefficient with the first principal component will be the 
selected variables. In this case the variables are {x1, x3, x5, x6, 
x11, x12, x13, x14}.

3.3.3. Method 3: a sensitivity analysis based on 
Garson’s method

Hernández et al. [14] trained and validated an ANN model 
to predict the coefficient of performance in a single-state 
absorption heat transformer. This model involves 16 opera-
tional variables in the input layer and 3 neurons in the hidden 
layer to calculate coefficient of performance. Table A13 shows 
the weights and bias obtained by Hernández et al. [14]. Now, 
the sensibility analysis described in section 2.3 was applied. 
The variables {x1, x3, x11, x12, x13, x14} are the most important 
variables selected with the sensibility analysis, considering 
the percentage of relative importance higher than 7%.

4. Comparison of the methods and discussion

The results of the three methods applied in experimen-
tal absorption heat transformer data were summarized 
in Table 6. Notice that the set generated by the correlation 
matrix contains the set obtained with the PCA. Moreover, 
the set generated by the CPA contains the set obtained by 
the sensibility analysis. The variables in the intersection of 
the methods are {TinGE–AB, ToutGE–CO, XinAB, XoutAB, XoutAB}.

As can be seen, the principal components method results 
presented in Table 7 reveal that the temperature and concen-
tration of lithium bromide solution in the inlet and outlet of 
the absorber and generator are the most significant variables 
to be observed and recorded with the purpose of estimate 
the coefficient of performance. The correlation matrix results 

added the information about vapor temperature from the 
evaporator to the absorber, this variable is crucial for the 
exothermic reaction carried out in the absorber. The pressure 
in the generator is considered in this analysis, it reminds us 
that this variable is strongly related to condenser pressure. 
Finally, the sensibility analysis results emphasize the change 
in the lithium bromide concentration solution between the 
absorber and generator, in the flame of heat transformers, it 
can be explained as the function of coefficient of performance 
with the flow ratio presented by Siqueiros and Holland [10].

4.1. Double-absorption heat transformer operating with H2O/LiBr

Rivera et al. [15] present the experimental information 
of a double-absorption heat transformer, it consists of a gen-
erator, a condenser, an evaporator, an absorber, an absorb-
er-evaporator, and an economizer. The authors emphasize 
that the system was effectively stable and repeatable. The 
entire system was built with stainless steel 316 with an 
approximate design power of 1 kW. Experimental informa-
tion, instruments, and uncertainty analysis were presented 
and discussed by Rivera et al. [15]. The maximum coefficient 
of performance was 0.37, the experimental study reveals that 
the system is 30% more efficient than a single-state absorp-
tion heat transformer. The database consists of 51 tests ran 
in steady-state, the experimental information used in this 
research is presented in Table 8.

4.1.1. Method 1: correlation matrix

The correlation matrix of the measured variables in the 
double-absorption heat transformer given the variables that 
have a high correlation coefficient r > 0.61 with each other are 
{x2, x3, x4, x6, x7, x8, x9, x10, x11, x12, x13, x16, x17, x18, x22, x25}.

4.1.2. Method 2: PCA combined with correlation analysis

The first principal component caught 56.3% of the vari-
ability of the information of the original variables, whereas, 
the second component caught 25.4%. Thus, taking the 
correlation coefficient between first and second principal 
components and the original variables, it obtains the follow-
ing set of variables {x1, x2, x5, x9, x15, x17, x18, x19, x20, x22, x25}.

4.1.3. Method 3: a sensitivity analysis based on 
Garson’s method

In previous sections, Garson’s method was used on 
the ANNs model developed by other authors. In this case, 
the ANN was trained and validated according to the pro-
cedure described in Hernández et al. [20]. Fig. 5 shows the 

Table 6
Selected variables by the three methods

Methods Results

Principal components x1, x3, x5, x6, x11, x12, x13, x14

Correlation matrix x1, x2, x3, x4, x5, x6, x11, x12, x13, x14, x16

Sensibility analysis x1, x3, x13, x11, x12, x14

Table 7
Selected variables by the three methods for the single-state absorption heat transformer

Methods Results

Principal components TinGE–AB, ToutAB–GE, ToutGE–CO, TinGE–AB, XinAB, XoutAB, XinGE, XoutGE

Correlation matrix TinGE–AB, TinEV–AB, ToutAB–GE, TinAB–GE, ToutGE–CO, TinGE–AB, XinAB, XoutAB, XinGE, XoutGE, PGE

Sensibility analysis TinGE–AB, ToutAB–GE, XinGE, XinAB, XoutAB, XoutGE
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coefficient of performance predicted by the ANN model 
with one neuron in the hidden layer against the experimen-
tal coefficient of performance. A good fit is observed and 
proof of them is the mean value of 0.9835 and intercept to 
0.00025916 in the linear regression. Then, we propose the cal-
culation of standardized residuals as the difference between 
the experimental and predicted COP, the histogram of these 
standard residuals was plotted in Fig. 6, as can be seen, the 
image shows practically a normal distribution except for it 
does not do a perfect symmetry, the mean of standardized 
residuals is 0.00013905 and the variance is 0.000010321.

Garson’s method was applied to the ANN trained and val-
idated in this section. The most important selected variables 
with the sensibility analysis considering the percentage of 
relative importance greater than 7% are {x3, x4, x6, x12, x13, x22}.  
The results of Garson’s method are illustrated in Fig. 7.

4.2. Comparison of the methods and discussion

As can be seen, multiple operational variables have a lin-
ear relationship with the COP according to the Correlation 
matrix method, it is not clear, what main variables are to con-
sider. According to the principal components, method results 
show in Table 9, the principal operational variables are the 
temperatures around of evaporator, generator, and absorber–
evaporator. These results indicate that the process in the 
absorber–evaporator is strongly influenced by the evapo-
rator and generator performance, and subsequently in the 
coefficient of performance of the entire system. The results of 
Garson’s method confirm the importance of the temperatures 
in the evaporator and generator and adds the oil tempera-
tures as an important aspect to consider.

5. Conclusions

Three mathematical methods were satisfactorily applied 
in experimental data of three heat transformers, to give a 

Table 8
Experimental database of double-absorption heat transformer

Mathematical label Temperatures (°C) Operation range

x1 TE 34.90–66.19
x2 TC 29.47–46.39
x3 TG 66.91–98.35
x4 TG,in 67.24–96.63
x5 TE,out 23.89–97.61
x6 TA 93.93–128.08
x7 TA,in 83.07–113.42
x8 TAB,out 85.12–115.53
x9 TAE 64.71–84.30
x10 TAE,in 76.10–99.40
x11 TAE,out 61.70–79.00
x12 Toil,in 61.90–117.20
x13 Toil,out 81.40–118.20
x14 TWA,in 25.70–30.00
x15 TWA,out 29.70–36.50

Concentrations (%)
x16 XG 52.40–60.70
x17 XAB 49.10–60.30
x18 XA 51.90–59.60

Heat flow (W)
x19 QE,EX 142.80–351.40
x20 QG,EX 699.60–1045.20
x21 QAE,EX 102.50–285.10
x22 QA,EX 1.40–262.40
x23 EFE 0.30–0.52
x24 GTL 39.60–80.60
x25 ΔT 0.64–30.44
Y COPEX 0.10–0.36

Fig. 5. COPexp against COP predicted by artificial neural network with one neuron in the hidden layer considering experimental infor-
mation by Rivera et al. [15].
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new focus in the search of the main operating variables that 
influence the prediction of the coefficient of performance. 
The main contributions of this work are:

•	 This work proposes to combine the CPA method with 
the correlation analysis to select variables in this kind of 
energy system.

•	 The correlation matrix and principal components meth-
ods can be used in experimental data directly without 
the need for a physical or empirical model. Whereas, for 
Garson’s method, it is necessary to train an ANN.

•	 For the absorption heat transformer with duplex function 
components, the methods enlisted in this work presented 
several perspectives to select the operational variables 
necessary to predict the COP. The three methods agree on 
the following variables: TinAB−GE and PAB. Special attention 
is provided by emphasizing the point where the risk of 
crystallization is significant.

•	 For the single-state absorption heat transformer, it is 
interesting to notice that the variables related to absorp-
tion–desorption are emphasized for the three methods.

•	 For the double-absorption heat transformer, the prin-
cipal component method highlights in a clear way the 
relationship between certain variables and the COP. 
The influence of the evaporator and generator on the 
absorber–evaporator could be the research way for a 
detailed study in this kind of equipment.

Fig. 6. Histogram of the standardized residuals.

Fig. 7. A double effect heat transformer by Rivera et al. [15]. Rel-
ative importance of input variables.

Table 9
Selected variables by the three methods

Methods Results

Principal components x1, x2, x5, x9, x15, x17, x18, x19, x20, x22, x25

Correlation matrix x2, x3, x4, x6, x7, x8, x9, x10, x11, x12, x13, x16, x17, x18, x22, x25

Sensibility analysis x3, x4, x6, x12, x13, x22
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This current research concludes mainly the following, 
linear algebra theory (eigenvalues and its eigenvectors) is 
correctly applied in the CPA. So, when it is combined with 
the correlation matrix gives a good method to select vari-
ables. In the analyzed applications, the variables selected 
by this method coincides with the variables used by other 
authors to predict the COP of the systems studied. On the 
other hand, the correlation matrix analysis is easy to imple-
ment. The researchers, according to the need, can use any of 
the three methods presented in this work.

The methods presented can be used for other types of 
heat transformers. Specifically, these methods have potential 
applications to locate the optimal variables that must be mea-
sured to predict the coefficient of performance of this kind of 
equipment with the aim of save the cost of instrumentation. 
In the future, the authors will analyze the effects of optimal 
operation variables selected with any of these methods on 
control or optimization problems of heat transformers.
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Appendix A

This appendix shows the correlation and covariance 
matrix, as well as, eigenvalues, eigenvectors, and the prin-
cipal components for the absorption heat transformer with 
duplex function components Morales et al. [13]. Similar 
tables have been obtained for the other systems, only one 
shows the most important variables.
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Table A1
Heat transformer with duplex components. Correlation matrix

Correlation matrix

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1.0000 0.8485 0.7255 0.7972 0.9175 0.3502 0.1423 0.8914 –0.1524
x2 0.8485 1.0000 0.5916 0.9547 0.9372 0.0688 –0.1978 0.7120 –0.4073
x3 0.7255 0.5916 1.0000 0.5580 0.6713 –0.1136 –0.1732 0.7235 0.1693
x4 0.7972 0.9547 0.5580 1.0000 0.9528 0.0476 –0.2885 0.7007 –0.4041
x5 0.9175 0.9372 0.6713 0.9528 1.0000 0.1568 –0.1573 0.8273 –0.2561
x6 0.3502 0.0688 –0.1136 0.0476 0.1568 1.0000 0.8273 0.3132 –0.0157
x7 0.1423 –0.1978 –0.1732 –0.2885 –0.1573 0.8273 1.0000 0.0752 0.1006
x8 0.8914 0.7120 0.7235 0.7007 0.8273 0.3132 0.0752 1.0000 –0.0150
x8 –0.1524 –0.4073 0.1693 –0.4041 –0.2561 –0.0157 0.1006 –0.0150 1.0000
x10 –0.0996 0.1386 0.0789 0.0453 –0.0131 –0.5191 –0.3590 –0.2868 0.1379
x11 –0.0346 –0.1100 0.2951 –0.2078 –0.1322 –0.3832 –0.1000 –0.1864 0.5723
x12 –0.8058 –0.6406 –0.7191 –0.6213 –0.7644 –0.2273 –0.0278 –0.9268 –0.0827
x13 –0.4399 –0.3422 –0.1743 –0.3265 –0.4311 –0.2790 –0.0665 –0.3986 0.0899
x14 0.0286 0.0087 0.4281 0.0137 0.0056 –0.4418 –0.2811 0.0998 0.3806
x15 –0.0602 –0.1165 –0.0418 –0.0730 –0.0750 –0.0898 –0.0357 –0.0028 0.5296
x16 –0.1271 0.1258 –0.2990 0.0373 –0.0537 –0.2317 –0.2562 –0.2449 –0.3567
COP 0.3213 0.2229 0.4307 0.2642 0.3965 –0.0876 –0.2035 0.3123 0.3021

Table A2
Heat transformer with duplex components. Correlation matrix (Continuation)

Correlation matrix

x10 x11 x12 x13 x14 x15 x16 COP

x1 –0.0996 –0.0346 –0.8058 –0.4399 0.0286 0.1832 –0.1271 0.3213
x2 0.1386 –0.1100 –0.6406 –0.3422 0.0087 –0.1165 0.1258 0.2229
x3 0.0789 0.2951 –0.7191 –0.1743 0.4281 –0.0418 –0.2990 0.4307
x4 0.0453 –0.2078 –0.6213 –0.3265 0.0137 –0.0730 0.0373 0.2642
x5 –0.0131 –0.1322 –0.7644 –0.4311 0.0056 –0.0750 –0.0537 0.3965
x6 –0.5191 –0.3832 –0.2273 –0.2790 –0.4418 –0.0898 –0.2317 –0.0876
x7 –0.3590 –0.1000 –0.278 –0.0665 –0.2811 –0.0357 –0.2562 –0.2035
x8 –0.2868 –0.1864 –0.9268 –0.3986 0.0998 –0.0028 –0.2449 0.3123
x9 0.1379 0.5723 –0.0827 0.0899 0.3806 0.5296 –0.3567 0.3021
x10 1.0000 0.7287 0.2223 0.1429 0.3824 0.2448 0.1966 0.1293
x11 0.7287 1.0000 0.1459 0.1638 0.5939 0.3640 –0.1719 0.1988
x12 0.2223 0.1459 1.0000 0.3743 –0.0616 –0.0160 0.1197 –0.3875
x13 0.1429 0.1638 0.3743 1.0000 0.1832 –0.0389 –0.1642 –0.6491
x14 0.3824 0.5939 –0.0616 0.1832 1.0000 0.2970 –0.3489 0.0752
x15 0.2448 0.3640 –0.0160 –0.0389 0.2970 1.0000 0.0924 0.0898
x16 0.1966 –0.1719 0.1197 –0.1642 –0.3489 0.0924 1.0000 –0.0880
COP 0.1293 0.1988 –0.3875 –0.6491 0.0752 0.0898 –0.0880 1.0000
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Table A3
Heat transformer with duplex components. Covariance matrix

Covariance matrix

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 25.5364 21.4352 18.8648 24.7572 27.9347 –0.0011 2.5182 21.2447 –0.4517
x2 21.4352 24.9920 15.2190 29.3316 28.2296 0.6999 –3.4631 16.7888 –1.1942
x3 18.8648 15.2190 26.4774 17.6451 20.8108 –1.1899 –3.1220 17.5576 0.5109
x4 24.7572 29.3316 17.6451 37.7685 35.2776 0.5957 –6.2110 20.3103 –1.4563
x5 27.9347 28.2296 20.8108 35.2776 36.2995 1.9226 –3.3187 23.5092 –0.9050
x6 3.6011 0.6999 –1.1899 0.5957 1.9226 4.1411 5.8972 3.0064 –0.0187
x7 2.5182 –3.4631 –3.1220 –6.2110 –3.3187 5.8972 12.2693 1.2418 0.2067
x8 21.2447 16.7888 17.5576 20.3103 23.5092 3.0064 1.2418 22.2442 –0.0415
x9 –0.4517 –1.1942 0.5109 –1.4563 –0.9050 –0.0187 0.2067 –0.0415 0.3439
x10 –0.9191 1.2656 0.7414 0.5083 –0.1446 –1.9289 –2.2962 –2.4698 0.1477
x11 –0.2519 –0.7916 2.1869 –1.8388 –1.1468 –1.1229 –0.5043 –1.2659 0.4833
x12 –9.0022 –7.0804 –8.1799 –8.4419 –10.1821 –1.0226 –0.2157 –9.6640 –0.1072
x13 –3.2446 –2.4970 –1.3092 –2.9285 –3.7916 –0.8287 –0.3401 –2.7445 0.0769
x14 0.0035 0.0011 0.0535 0.0020 0.0008 –0.0219 –0.0239 0.0114 0.0054
x15 –0.0052 –0.0100 –0.0037 –0.0077 –0.0077 –0.0031 –0.0021 –0.0002 0.0053
x16 –0.0022 0.0021 –0.0052 0.0008 –0.0011 –0.0016 –0.0030 –0.0039 –0.0007

Table A4
Heat transformer with duplex components. Covariance matrix (Continuation)

Covariance matrix

x10 x11 x12 x13 x14 x15 x16

x1 –0.9191 –0.2519 –9.0022 –3.2446 0.0035 –0.0052 –0.0022
x2 1.2656 –0.7916 –7.0804 –2.4970 0.0011 –0.0100 0.0021
x3 0.7414 2.1869 –8.1799 –1.3092 0.0535 –0.0037 –0.0052
x4 0.5083 –1.8388 –8.4419 –2.9285 0.0020 –0.0077 0.0008
x5 –0.1446 –1.1468 –10.1821 –3.7916 0.0008 –0.0077 –0.0011
x6 –1.9289 –1.1229 –1.0226 –0.8287 –0.0219 –0.0031 –0.0016
x7 –2.2962 –0.5043 –0.2157 –0.3401 –0.0239 –0.0021 –0.0030
x8 –2.4698 –1.2659 –9.6640 –2.7445 0.0114 –0.0002 –0.0039
x9 0.1477 0.4833 –0.1072 0.0769 0.0054 0.0053 –0.0007
x10 3.3345 1.9161 0.8974 0.3810 0.0170 0.0077 0.0012
x11 1.9161 2.0735 0.4645 0.3443 0.0208 0.0090 –0.0008
x12 0.8974 0.4645 4.8876 1.2079 –0.0033 –0.0006 0.0009
x13 0.3810 0.3443 1.2079 2.1307 0.0065 –0.0010 –0.0008
x14 0.0170 0.0208 –0.0033 0.0065 0.0006 0.0001 –0.0000
x15 0.0077 0.0090 –0.0006 –0.0010 0.0001 0.0003 0.0000
x16 0.0012 –0.0008 0.0009 –0.0008 –0.000 0.000 0.0000

Table A5
Heat transformer with duplex components. Eigenvalues of the covariance matrix

λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Eigenvalues 148.9423 22.2273 16.9830 6.3483 2.5216 1.8846 1.2228 0.9231

λ λ9 λ10 λ11 λ12 λ13 λ14 λ15 λ16

Eigenvalues 0.5915 0.4251 0.2094 0.1821 0.0384 0.0002 0.0001 0.0000
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Table A6
Heat transformer with duplex components. Eigenvectors

λ Eigenvectors

λ16 –0.0015 –0.0010 0.0002 0.0004 0.0011 0.0004 0.0006 0.0013 –0.0006
λ15 0.0063 –0.0039 –0.0026 0.0098 –0.0103 –0.0056 0.0011 0.0012 0.0273
λ14 –0.0033 –0.0023 0.0016 0.0059 –0.0051 –0.0019 0.0010 0.0062 –0.0079
λ13 0.1965 –0.0074 0.0058 0.0297 –0.0929 –0.1618 0.0276 –0.0569 0.8114
λ12 0.4565 –0.3217 –0.0011 0.3363 –0.4600 0.1348 –0.1486 –0.1421 –0.2887
λ11 0.0772 0.1307 –0.0823 0.2403 –0.3333 –0.0005 –0.0311 –0.1465 0.3800
λ10 0.0420 0.2495 0.0532 –0.2794 0.0086 0.7763 –0.4360 –0.0915 0.1427
λ9 0.0222 0.0746 –0.0223 –0.2798 0.3476 –0.1934 0.0757 –0.4552 –0.0498
λ8 0.6222 –0.0500 –0.1913 –0.2474 0.0599 –0.2622 –0.2270 –0.0327 –0.1186
λ7 0.0721 0.6012 0.1213 –0.2320 –0.3941 –0.1609 –0.0160 –0.0377 –0.2400
λ6 –0.1298 0.3691 –0.1668 –0.0155 –0.3335 –0.1526 0.1006 0.4077 –0.0143
λ5 0.2063 0.0176 –0.3928 –0.3485 0.1209 –0.1325 –0.2117 0.2699 0.1039
λ4 0.2251 0.2819 0.1626 –0.0259 –0.0139 0.0377 0.4134 –0.4980 0.0041
λ3 0.0348 0.1984 –0.7816 0.2900 0.1420 0.2692 0.2916 –0.1035 –0.0767
λ2 0.2982 –0.2095 0.1351 –0.3595 –0.0764 0.3250 0.6451 0.3528 0.0394
λ1 0.3902 0.3851 0.3177 0.4702 0.4865 0.0243 –0.0385 0.3387 –0.0109

Table A7
Heat transformer with duplex components. Eigenvectors (Continuation)

λ Eigenvectors

λ16 –0.0003 0.0020 0.0013 0.0004 0.0171 –0.0734 0.9971
λ15 0.0020 0.0012 –0.0012 –0.0029 –0.1473 –0.9861 –0.0701
λ14 –0.0011 0.0141 0.0030 –0.0006 –0.9888 0.1456 0.0276
λ13 0.1415 –0.4792 0.1126 –0.0032 –0.0091 0.0266 0.0040
λ12 0.2829 –0.2118 –0.3064 –0.0277 0.0009 0.0037 0.0020
λ11 –0.4578 0.5552 –0.3323 –0.0775 0.0083 0.0154 0.0011
λ10 0.0326 –0.0358 –0.0191 0.1754 –0.0073 –0.0042 0.0004
λ9 –0.0796 –0.2209 –0.6749 0.1753 –0.0118 –0.0057 0.0015
λ8 –0.3292 0.0859 0.3432 0.3743 –0.0010 –0.0024 0.0001
λ7 –0.2021 –0.3080 0.0584 –0.4304 –0.0033 –0.0054 0.0015
λ6 0.2589 0.0097 –0.2128 0.6287 0.0030 0.0011 0.0001
λ5 0.4390 0.2944 –0.2105 –0.4440 0.0008 0.0039 0.0006
λ4 0.4707 0.3654 0.2502 0.0673 0.0013 0.0002 0.0001
λ3 –0.1112 –0.2092 0.0968 –0.0683 –0.0037 –0.0004 0.0002
λ2 –0.2002 –0.0225 –0.1516 –0.0498 –0.0007 –0.0000 –0.0003
λ1 –0.0030 –0.0113 –0.1466 –0.0476 0.0002 –0.0001 –0.0000
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Table A9
Heat transformer with duplex components. Correlation coefficient: principal components vs. original variables

x1 x2 x3 x4 x5 x6 x7 x8 x9

Z16 –0.0000 –0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –0.0000
Z15 0.0000 –0.0000 –0.0000 0.0000 –0.0000 –0.0000 0.0000 0.0000 0.0005
Z14 –0.0000 –0.0000 0.0000 0.0000 –0.0000 –0.0000 0.0000 0.0000 –0.0002
Z13 0.0076 –0.0003 0.0002 0.0009 –0.0030 –0.0156 0.0015 –0.0024 0.2710
Z12 0.0385 –0.0275 –0.0001 0.0234 –0.0326 0.0283 –0.0181 –0.0129 –0.2100
Z11 0.0070 0.0120 –0.0073 0.0179 –0.0253 –0.0001 –0.0041 –0.0142 0.2965
Z10 0.0054 0.0325 0.0067 –0.0296 0.0009 0.2487 –0.0812 –0.0127 0.1587
Z9 0.0034 0.0115 –0.0033 –0.0350 0.0444 –0.0731 0.0166 –0.0742 –0.0653
Z8 0.1183 –0.0096 –0.0357 –0.0387 0.0095 –0.1238 –0.0623 –0.0067 –0.1944
Z7 0.0158 0.1330 0.0261 –0.0417 –0.0723 –0.0875 –0.0051 –0.0088 –0.4525
Z6 –0.0353 0.1014 –0.0445 –0.0035 –0.0760 –0.1029 0.0394 0.1187 –0.0335
Z5 0.0648 0.0056 –0.1212 –0.0900 0.0319 –0.1034 –0.0959 0.0909 0.2814
Z4 0.1122 0.1421 0.0796 –0.0106 –0.0058 0.0466 0.2974 –0.2661 0.0178
Z3 0.0284 0.1636 –0.6259 0.1945 0.0971 0.5452 0.3431 –0.0904 –0.5391
Z2 0.2782 –0.1976 0.1238 –0.2758 –0.0598 0.7529 0.8683 0.3527 0.3165
Z1 0.9423 0.9401 0.7535 0.9336 0.9855 0.1454 –0.1340 0.8764 –0.2262

Table A8
Heat transformer with duplex components. Variance, standard deviation, variance of principal components

(λ) - Eigenvalues % Variability percent % accumulated Standard deviation Variance

148.9423 73.5519 73.5519 12.2042 148.9423
22.2273 10.9764 84.5283 4.7146 22.2273
16.9830 8.3867 92.9150 4.1210 16.9830
6.3483 3.1350 96.0500 2.5196 6.3483
2.5216 1.2452 97.2952 1.5879 2.5216
1.8846 0.9307 98.2259 1.3728 1.8846
1.2228 0.6039 98.8298 1.1058 1.2228
0.9231 0.4559 99.2856 0.9608 0.9231
0.5915 0.2921 99.5777 0.7691 0.5915
0.4251 0.2099 99.7876 0.6520 0.4251
0.2094 0.1034 99.8910 0.4576 0.2094
0.1821 0.0899 99.9809 0.4267 0.1821
0.0384 0.0189 99.9999 0.1959 0.0384
0.0002 0.000090876 100.0000 0.0136 0.00018402
0.0001 0.000049081 100.0000 0.0100 0.000099389
0.0000 0.00000090734 100 0.0014 0.0000018374
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Table A10
Heat transformer with duplex components. Correlation coefficient: principal components vs. original variables (Continuation)

x10 x11 x12 x13 x14 x15 x16 COP

Z16 –0.0000 0.0000 0.0000 0.0000 0.0010 –0.0058 0.3984 0.0181
Z15 0.0000 0.0000 –0.0000 –0.0000 –0.0604 –0.5737 –0.2059 0.0951
Z14 –0.0000 0.0001 0.0000 –0.0000 –0.5519 0.1153 0.1103 0.0488
Z13 0.0152 –0.0652 0.0100 –0.0004 –0.0734 0.3036 0.2281 0.1123
Z12 0.0661 –0.0628 –0.0591 –0.0081 0.0163 0.0929 0.2482 –0.1314
Z11 –0.1147 0.1764 –0.0688 –0.0243 0.1562 0.4104 0.1507 –0.0762
Z10 0.0116 –0.0162 –0.0056 0.0784 –0.1956 –0.1584 0.0856 –0.0897
Z9 –0.0335 –0.1180 –0.2348 0.0923 –0.3726 –0.2576 0.3319 0.1006
Z8 –0.1732 0.0573 0.1491 0.2464 –0.0398 –0.1362 0.0404 –0.3023
Z7 –0.1224 –0.2365 0.0292 –0.3261 –0.1513 –0.3509 0.4755 –0.0888
Z6 0.1947 0.0093 –0.1321 0.5913 0.1678 0.0846 0.0538 –0.5734
Z5 0.3817 0.3246 –0.1512 –0.4830 0.0542 0.3627 0.2634 0.3694
Z4 0.6494 0.6394 0.2852 0.1162 0.1393 0.0353 0.0379 –0.0523
Z3 –0.2510 –0.5986 0.1804 –0.1929 –0.6216 –0.1018 0.2733 –0.2840
Z2 –0.5169 –0.0738 –0.3233 –0.1607 –0.1285 –0.0059 –0.3884 –0.0178
Z1 –0.0200 –0.0960 –0.8091 –0.3978 0.0817 0.0696 –0.0769 0.3588

Table A11
Heat transformer with duplex components. Weights and biases for the ANN model proposed by Morales et al. [13]

Wi

K s1 s2 s3 s4 s5 s6 s7

1 –1.9099 1.2920 0.5616 –1.5757 –0.5532 1.5157 0.4352
2 –0.0288 –0.3611 0.3854 –0.3885 –0.5210 –0.5062 0.9491
3 0.2129 2.2394 –1.1379 1.0966 –0.8497 –0.7690 1.6061
4 1.5230 1.0080 –1.4527 0.7660 0.9598 1.4658 1.9828
5 –1.3621 –0.4408 1.4821 0.3322 –1.7076 –0.6261 –0.5569
6 –0.0520 0.0135 –0.0236 0.0493 –1.0766 2.0584 –0.1266
7 –0.0949 0.1629 0.4055 –0.0468 0.1504 –1.4808 –0.3215
8 0.3049 –0.2157 0.4969 2.2333 –0.8665 –0.2973 0.7216
9 1.0391 0.6563 –1.7324 2.8432 1.2625 –1.1286 –1.5479
10 0.9664 –1.1222 1.0486 0.0371 –0.3499 –0.9110 –2.0244
11 –3.0315 –2.4746 –0.9918 –1.6792 –1.1325 –0.2667 0.8165
12 3.1316 1.6210 –1.0206 1.7662 –0.0674 –1.8688 0.8866
13 0.8523 –2.5339 –2.7502 –1.4656 1.3361 0.0175 –1.0743
14 0.0316 –1.4242 –0.0977 –0.2727 –1.7286 –0.9406 –0.6384
15 –0.5229 2.3381 –0.0735 0.2790 –0.0069 –0.3185 –0.8393
16 0.7108 1.4673 –0.6754 0.0599 1.9246 0.5640 0.0839
W0(s,l)(l = 1) 0.1899 0.0610 0.1628 0.1498 0.0019 0.0011 0.1161
b(1,s) 0.8544 0.0116 4.2146 2.7413 2.1583 2.9889 2.5522
b(2,1) 0.0965
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Table A13
Absorption heat transformer. Weights and biases for the ANN 
model proposed by Hernández et al. [14]

K s1 s2 s3

1 1.0471 20.0710 3.7487
2 1.6234 6.4620 0.1130
3 8.5410 46.4600 3.5127
4 1.7987 6.3265 0.5450
5 7.1516 26.4226 0.6408
6 1.1960 16.5470 0.3451
7 1.0900 14.6380 0.0254
8 2.5118 37.4539 0.0000
9 0.0030 0.3227 0.0032
10 2.3420 4.4175 0.1114
11 242.3930 216.8700 0.4314
12 159.4000 135.7784 7.1419
13 172.5000 115.0829 12.6125
14 20.8370 10.2770 3.2912
15 19.4760 17.5255 0.1576
16 65.5880 47.0385 1.1184
(l = 1)W0(s,l) –0.186 0.0239 0.8825
Bias b(1,s) 129.0939 17.7516 6.4906
b(2,1) 0.2427

Appendix B

Table A12
Absorption heat transformer. Variance, standard deviation, variance of principal components

(λ) - Eigenvalues % Variability percent % accumulated Standard deviation Variance

60.7767 55.5186 55.5186 7.7959 60.7767
15.2189 13.9022 69.4207 3.9011 15.2189
13.0428 11.9144 81.3351 3.6115 13.0428
9.9033 9.0465 90.3816 3.1469 9.9033
5.2302 4.7777 95.1593 2.2870 5.2302
2.3746 2.1691 97.3284 1.5410 2.3746
1.4656 1.3388 98.6672 1.2106 1.4656
0.6603 0.6032 99.2704 0.8126 0.6603
0.4933 0.4507 99.7210 0.7024 0.4933
0.2188 0.1998 99.9208 0.4677 0.2188
0.0442 0.0404 99.9613 0.2103 0.0442
0.0366 0.0335 99.9947 0.1914 0.0366
0.0058 0.0053 100.0000 0.0760 0.0058
0.0000 0.00000000000000071310 100.0000 0.0000000000000036802 1.3544e-29

–0.0000 0.00000000000000047462 100.0000 0.0000000000000029549 8.7312e-30
–0.0000 –0.00000000000000093569 100 0.0000000000000017129 2.9341e-30
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