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a b s t r a c t
In this paper, a novel algorithm for calculating the vertical velocity of incompressible flow based 
on the variational method is proposed. The partial derivatives of the discrete observation data are 
calculated by the one-dimensional numerical differential method which is based on the Tikhonov 
regularization. The new method can overcome the shortcoming that the errors of the vertical veloc-
ity calculated by the finite difference method increase with the increase of the grid resolution when 
the horizontal flow field exists observation errors. Numerical results show that the relative error of 
the novel method is more than 90% lower than that of the finite difference method when the grid 
resolution is relatively high. Also, when the magnitude of the observation error is unknown or the 
boundary condition of the vertical velocity is missing, the new method is still superior to the finite 
difference method.
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1. Introduction

In the ocean, meteorological observation and some fluid 
experiments, only the horizontal velocity can be observed 
but the vertical velocity needs to be solved numerically [1–5]. 
For incompressible fluids, the continuity Eq. (1) is:
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Theoretically, if the horizontal velocities u, v and the 
vertical velocity boundary conditions are known, the ver-
tical velocity can be obtained by solving the continuity 
equation numerically. However, when the finite difference 
method is used, the observation error in the horizontal flow 
field may lead to a large error in the final vertical velocity. 
To reduce the error of the calculated vertical velocity, we 

propose a new method for solving vertical velocity based 
on the variation.

No matter which numerical method is adopted, it is 
inevitable to calculate the partial derivatives of the horizon-
tal velocities. In the field of applied mathematics, calculat-
ing the derivatives at discrete points is called the numerical 
differential problem, which is known to be ill-posed in the 
sense that a small perturbation in the observation data may 
lead to a large error in the computed derivative, and the 
error increases sharply as the observation density increases 
[6,7]. Therefore, if there is an observation error in the hori-
zontal velocity field, a large error will occur when the ver-
tical velocity is calculated by the finite difference method.

For the problem of numerical differentiation, many 
methods have been proposed [8–11]. The Tikhonov regu-
larization method is one of them, which has been proved 
to be very effective in solving ill-posed problems and 
inverse problems [12–22]. Based on the idea of Tikhonov 
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regularization, reconstructed the first-order partial deriv-
atives of the two-dimensional meteorological observation 
data, and calculated the vorticity of the observed wind field 
using the one-dimensional numerical differential method 
[23–25]. Their results show that the numerical differential 
method based on the Tikhonov regularization is feasible to 
analyze meteorological observation data and can enhance the 
recognizing ability for the small-scale weather systems.

In this paper, we propose a novel algorithm for calcu-
lating the vertical velocity of the incompressible flow based 
on the variational method. The one-dimensional numerical 
differential method based on the Tikhonov regularization 
is used to calculate the partial derivatives [25]. The sensitiv-
ity of the new method to the magnitude of the observation 
error and the boundary conditions of the vertical velocity 
is studied systematically, and the results of the method are 
compared with those of the finite difference method.

2. Mathematical theory

2.1. Algorithm for calculating vertical velocity based on variation

In the Cartesian coordinate system, the horizontal 
observed flow field is ũ(x,y,z) and ῦ(x,y,z), and the vertical 
observed component is unknown. The three-dimensional 
study area is denoted as Ω and the vertical coordinate 
z ∈ [0,H]. It is assumed that the corrected flow field is (u,v,w), 
which satisfies the functional

J u u v v d= −( ) + −( )
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where the vertical velocity w satisfies the following boundary 
condition.
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To get the vertical velocity w, the Lagrange multiplier 
method is used. The generalized functional is defined as
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and its variations is
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Applying the Green formula to the above Eq. (7), then
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where n is the outer normal direction of Ω. Using the 
arbitrariness of δu, δv and δw, it is easy to prove that u, v 
and λ satisfy the following condition:
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From Eq. (8) λ is independent of z, namely, λ = λ(x,y). 
Substituting Eq. (8) into Eq. (3)
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Considering λ is independent of z, and using the vertical 
velocity boundary conditions (4). Eq. (9) is integrated into the 
vertical direction and we can get
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Eq. (11) is the Dirichlet boundary value problem of 
Poisson’s equation which can be solved by the successive 
overrelaxation method. From Eq. (8) the corrected horizontal 
flow field is obtained
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Then, the vertical velocity can be obtained by integrating 
Eq. (9) in the range [0,z] of the vertical direction, that is,

w x y z w Ddz z
z

, ,( ) = − +∫0
0

 ∆λ  (13)

2.2. One-dimensional numerical differential method

In solving Eqs. (11) and (13) it is necessary to calculate 
the partial derivatives of the observed horizontal velocities, 
which is a typical numerical differential problem. In this 



X. Chen et al. / Desalination and Water Treatment 188 (2020) 400–405402

paper, the one-dimensional numerical differential method 
based on Tikhonov regularization introduced in [25] is used 
to calculate the first-order partial derivatives. The basic idea 
of the method is briefly described below.

Let y = y(x) be a function with x ∈ [0,1], hi = xi – xi–1 and 
h h

i n i=
≤ ≤
max
1

. ỹi is the observation data at xi and δ is a given con-
stant which satisfies

� …y y x i ni i− ( ) ≤ =δ, , , , ,0 1 2  (14)

We want to find a function f*(x) that satisfies f*′(x) is an 
approximation of y′(x).

Suppose ỹ0 = y(0) and ỹn = y(1). Namely, the values at both 
ends are considered to be accurate. The following function is 
defined:
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where α the regularization parameter. The above problem 
can be transformed into the following two problems.

Problem-1: Find the function f* ∈ H2(0,1) satisfying 
f*(0) = y(0) and f*(1) = y(1) such that J(f*) = min!.

Problem-2: If f* exists, how to choose the regularization 
parameter α related to δ, so that f*′(x) is an approximation 
α = δ2 of y′(x)?

Theoretically, for any α > 0, the solution of Problem-1 
exists and is unique, and f* is a piecewise natural cubic spline 
function. The solution of Problem-1 is convergent when the 
regularization parameter is simply taken as. A detailed proof 
process can refer to [26–27].

The expression of f* on subinterval [xi,xi+1] is:
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Thus a total of 4n undetermined coefficients can be 
obtained by solving the following Eqs. (17), (18), (19) and (20) 
and the solution is unique.
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and ỹj is the observation data at the j-th point. The spe-
cific solution process can refer to [21]. Once these 4n 
coefficients are obtained, the analytical expression of the 
first-order derivative can be expressed as
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Since the analytical expression, Eq. (16) of the recon-
struction function in each subinterval can be obtained, it is 
noteworthy that the observation field can be reconstructed 
and refined to any resolution. For the two-dimensional 
observation data, the first-order partial derivatives can be 
obtained by the above one-dimensional numerical differenti-
ation method row by row or column by column.

3. Numerical results

3.1. Problem description and calculation scheme

The effectiveness of the method is verified by the fol-
lowing numerical experiments. The three-dimensional 
incompressible exact flow field in the Cartesian coordinate 
system is:
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The observed horizontal flow field (ũ,ῦ) is generated 
by the exact flow field (ue,ve) and the uniformly distributed 
random error in the range of [–δ,δ]. The following four 
schemes are proposed to calculate the vertical velocity, and 
the calculated results are compared with the exact vertical 
velocity we.

Scheme-1: Firstly, the horizontal divergence D of the 
observation flow field is calculated by the finite difference 
method. Then, λ it is obtained by solving Eq. (11) and (u,v) is 
obtained by substituting λ into Eq. (12). Finally, the vertical 
velocity w is calculated from Eq. (13).

Scheme-2: Firstly, the horizontal divergence D is calcu-
lated by the regularization method and the observation flow 
field (ũ,ῦ) is replaced by the reconstructed flow field calcu-
lated by Eq. (16). Then, λ it is obtained by solving Eq. (11) and 
(u,v) is obtained by substituting λ into Eq. (12). Finally, the 
vertical velocity w is calculated from Eq. (13).

Scheme-3: Firstly, the horizontal divergence D is calcu-
lated by the finite difference method. Then, using the finite 
difference method, the vertical velocity w is obtained by 

solving the equation ∂
∂

= −
w
z

D .

Scheme-4: Firstly, the horizontal divergence D is calculated by 
the regularization method and the observation flow field is 
replaced by the reconstructed flow field. Then, using the fi-
nite difference method, the vertical velocity w is obtained by 

solving the equation ∂
∂

= −
w
z

D .
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The relative error between the calculated vertical velocity 
and the exact value is defined as:
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where w is the calculated vertical velocity and we is the exact 
value.

3.2. Schemes comparison with determined δ

Let δ = 0.05, x ∈ [0,2π], y ∈ [0,2π] and z ∈ [0,0.2π]. Table 1 
shows the relative errors calculated at different grid resolu-
tions. As shown in the table, the relative error of Scheme-1 
is far less than that of Scheme-3, and the relative error of 
Scheme-2 is far less than that of Scheme-4. It is shown that 
the variational-based vertical velocity calculation method 
is superior to the traditional finite difference method when 
the calculation method of a derivative is the same.

The relative error of Scheme-1 and Scheme-3 increases 
with the increase of the resolution, while the relative error of 
Scheme-2 and Scheme-4 hardly changes with the resolution, 
which further proves that the problem of numerical differen-
tiation is to be ill-posed in the sense that a small perturbation 
in the values of the observation flow field may lead to large 
errors in the computed derivative.

It also can be seen from Table 1 that the relative error of 
Scheme-2 is less than that of Scheme-1. When the grid reso-
lution is 160 × 160 × 40, the relative error of Scheme-2 is 84% 
smaller than that of Scheme-1. It is shown that using the 

regularization method to calculate the derivative can effec-
tively reduce the relative error when the variational-based 
vertical velocity calculation method is adopted.

In summary, Scheme-2 is the optimal scheme to cal-
culate the vertical velocity. When the grid resolution is 
160 × 160 × 40, the relative error of Scheme-2 is reduced by 
91% compared with that of the traditional finite difference 
method, namely Scheme-3.

3.3. Schemes comparison with unknown δ

The regularization parameter in Eq. (15) is taken as 
α = δ2. However, the magnitude of the observation error δ 
is unknown in many practical cases. Therefore, it is neces-
sary to examine the calculation results of Scheme-2 with the 
change of the guessed observation error δ′. The true value of 
the observation error is still taken as δ = 0.05, and the regular-
ization parameter is taken as α = δ′2.

Table 2 shows the relative errors of the vertical velocity 
obtained by Scheme-2 when δ′ takes different value. It can be 
seen from the table that even if the exact value δ is unknown, 
as long as the guess value δ′ is within a certain range, the 
vertical velocity obtained by the new method is still more 
accurate than that obtained by the finite difference method. 
In some cases, such as δ′ = 0.010 and δ′ = 0.005, the relative 
error is smaller than that of δ′ = δ = 0.05. Therefore, according 
to the results shown in Table 3, as long as δ′ in the range of 
[0.01δ,2δ], the relative error of Scheme-2 is less than that of 
the finite difference method, namely Scheme-3.

3.4. Schemes comparison with missing boundary condition

When the vertical velocity boundary conditions at 
z = 0 and z = H are unknown, the vertical velocity can not 

Table 1
Relative error of vertical velocity at different grid resolution with δ = 0.05

40 × 40 × 40 80 × 80 × 40 120 × 120 × 40 160 × 160 × 40

Scheme-1 3.2% 6.0% 8.8% 11.6%
Scheme-2 2.1% 1.9% 1.8% 1.8%
Scheme-3 14.1% 15.6% 17.7% 20.2%
Scheme-4 13.5% 13.5% 13.5% 13.5%

Table 2
Relative errors of Scheme-2 with different δ′

40 × 40 × 40 80 × 80 × 40 120 × 120 × 40 160 × 160 × 40

δ′ = 0.000 7.76% 16.33% 25.30% 34.88%
δ′ = 0.0005 7.04% 7.85% 5.81% 5.01%
δ′ = 0.001 6.01% 4.31% 3.44% 3.19%
δ′ = 0.005 2.03% 1.55% 1.38% 1.27%
δ′ = 0.010 1.45% 1.10% 1.00% 0.93%
δ′ = δ = 0.05 2.10% 1.90% 1.80% 1.80%
δ′ = 0.100 6.32% 6.14% 6.11% 6.11%
δ′ = 0.250 28.09% 28.18% 28.21% 28.24%
δ′ = 0.500 60.72% 60.92% 61.00% 61.04%
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be obtained by any of the four schemes. When one of the 
boundary conditions is unknown, the vertical velocity can 
be obtained by Scheme-3 and Scheme-4 which are based 
on the finite difference method, but can not be obtained by 
Scheme-1 and Scheme-2 which are based on the variational 
method. In many practical problems, it is difficult to obtain 
the top and bottom vertical velocity boundary conditions at 
the same time. Therefore, it is necessary to solve the problem 
of missing boundary conditions when Scheme-1 or Scheme-2 
is used to get the vertical velocity. We assume that the vertical 
velocity at z = 0 is known and the vertical velocity at z = H is 
unknown. Then, the following two schemes can be used to 
solve the problem.

Scheme-5: Firstly, assuming the vertical velocity at z = H is 
zero, and then calculate the vertical velocity using Scheme-2.

Scheme-6: Firstly, the vertical velocity is calculated by 
Scheme-4, and the obtained vertical velocity at z = H is taken 
as the boundary condition. Then, the vertical velocity is recal-
culated by Scheme-2.

Let δ = 0.05, x ∈ [0,2π], y ∈ [0,2π] and z ∈ [0,0.25π]. 
According to Eq. (23) it can be seen that the vertical velocity 
at z = 0.25π is not zero. Table 3 shows the relative errors cal-
culated at different grid resolutions. As shown in the table, 
the relative error of Scheme-5 is very large, which indicates 
that when the guessed boundary condition deviates greatly 
from the exact boundary condition, it will bring great error 
to the final result.

The relative error of Scheme-6 is about 50% lower than 
that of Scheme-4, which shows that even if the boundary 
condition is predicted by the finite difference method, the 
variational-based method is still better than the pure finite 
difference method, namely Scheme-4.

3.5. Schemes comparison with δ = 0.0

To investigate the calculation results of the four schemes 
in the case of no observation error, the observed horizontal 
flow field (ũ,ῦ) is reconstructed with δ = 0.0. The regulariza-
tion parameter is taken as α = 0. Table 4 shows the relative 
errors calculated at different grid resolutions. As shown in 

the table, the relative error of Scheme-3 is almost the same as 
that of Scheme-4 at any grid resolution, and the relative error 
of Scheme-1 and Scheme-2 is almost the same when the grid 
resolution is relatively high. The results show that the deriva-
tive calculation method has little effect on the relative error of 
the vertical velocity when there is no observation error.

The relative errors of Scheme-1 and Scheme-2 are obvi-
ously smaller than those of Scheme-3 and Scheme-4 at any 
grid resolution. When grid resolution is 160 × 160 × 40, the 
relative error of Scheme-1 and Scheme-2 is 98% less than 
that of Scheme-3 and Scheme-4. It is shown that the varia-
tional-based vertical velocity calculation method has a more 
obvious advantage when there is no observation error.

4. Conclusion

In this paper, a novel method for calculating the vertical 
velocity of the incompressible flow based on the variational 
method is proposed. The one-dimensional numerical differ-
ential method based on the Tikhonov regularization is used 
to calculate the partial derivatives. By comparison with the 
traditional finite difference method, we can draw the follow-
ing conclusions:

• When the calculation method of the derivative is the 
same, the variational-based vertical velocity calculation 
method is superior to the traditional finite difference 
method.

• When the observation error exists in the horizontal flow 
field, the relative error of the vertical velocity can be 
effectively reduced by the one-dimensional numerical 
differential method.

• When the magnitude of the observation error is unknown, 
as long as the ratio between the guessed and the exact 
value is between 0.01–2, the vertical velocity calculated 
by the new method is still more accurate than that of the 
finite difference method.

• When the top or bottom boundary condition of the ver-
tical velocity is absent, the missing boundary condi-
tion can be obtained by the one-dimensional numerical 

Table 3
Relative errors for missing boundary condition cases with δ = 0.05

40 × 40 × 50 80 × 80 × 50 120 × 120 × 50 160 × 160 × 50

Scheme-4 12.3% 12.3% 12.3% 12.3%
Scheme-5 71.0% 75.9% 77.6% 78.4%
Scheme-6 6.2% 6.4% 6.5% 6.5%

Table 4
Relative error of vertical velocity at different grid resolution with δ = 0.0

40 × 40 × 40 80 × 80 × 40 120 × 120 × 40 160 × 160 × 40

Scheme-1 0.62% 0.31% 0.25% 0.23%
Scheme-2 0.55% 0.30% 0.25% 0.23%
Scheme-3 13.56% 13.59% 13.60% 13.60%
Scheme-4 13.57% 13.59% 13.60% 13.60%
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differential method and the finite difference method 
approximately. The relative error of the vertical velocity 
which is re-calculated by the variational-based method 
decreases about 50% compared with the simple finite 
difference method.

In summary, the proposed vertical velocity calculation 
method is obviously superior to the traditional finite differ-
ence method. When the grid resolution is relatively high, 
the relative error can be reduced by more than 90%. This 
method can be widely applied to the calculation of the ver-
tical velocity in ocean, meteorology and fluid experiment 
observations.
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