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a b s t r a c t
The generation process of cyanobacteria blooms in lakes and reservoirs is complex. Many influenc-
ing factors with time-varying characteristics make predictions more difficult. This study proposed 
a systematic multifactor data-driven prediction model. Through this systematic method, a predic-
tion model could be built with fewer key influencing factors for cyanobacteria bloom in lakes and 
reservoirs. First, we introduced a definition of the correlation coefficient and synthesized the consis-
tency of the changing trend on a time series and the structural similarity of state characteristics to 
select the key factors influencing cyanobacteria blooms in lakes and reservoirs. We used an improved 
wavelet threshold method to filter the data noise involved in modeling. After the nonlinear time-se-
ries analysis method of phase-space reconstruction, we realized a clustering method according to a 
comprehensive metric scale of similarity. Then, we determined the partial neighbor information of 
current points in each time series to predict cyanobacteria blooms in lakes and reservoirs using a local 
linear regression prediction model. Compared with conventional prediction models and the classi-
cal long short-term memory model, the results of the trend consistency and the accuracy demon-
strated that the proposed model was superior. This verified the validity of the systematized model 
construction method. This model can be used to predict cyanobacteria blooms in lakes and reservoirs 
and supports the treatment of the water environment.

Keywords:  Lakes and reservoirs; Cyanobacteria bloom; Key influencing factors; Correlation coefficient; 
Prediction; Metric scale of similarity

1. Introduction

In recent years, rapid industrialization and urbaniza-
tion with limited environmental protection have resulted 
in the eutrophication of water in lakes and reservoirs. 
Eutrophication is the source of cyanobacteria bloom for-
mation, aggregation, and outbreak. At present, mecha-
nism models and data-driven models are the two main 
methods used to research the cyanobacteria bloom pre-
diction model. The mechanism model is used to simulate 
the ecological dynamics of cyanobacteria growth process 

based on the differential equations [1-3]. Multiple factors 
influence cyanobacteria bloom in lakes and reservoirs, 
including total phosphorus (TP), total nitrogen (TN), water 
temperature, and even wind speed, as well as other meteo-
rological factors [4]. The multivariate model can be used to 
obtain sufficient information to understand the mechanism 
of cyanobacteria bloom more clearly and can improve the 
accuracy of the model. It also, however, increases monitor-
ing and maintenance costs. In addition, in some politically 
sensitive areas, because of the inability to use some sensors, 
the application of the existing multivariate model is limited. 
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Understanding how to use fewer variables to build a predic-
tion model of cyanobacteria bloom in lakes and reservoirs 
has practical significance for specific areas of political or 
economic sensitivity.

Cyanobacteria blooms are characterized by random-like 
sensitive chaos [5]. Therefore, it is more difficult to cali-
brate the parameter of the mechanism-driven model with 
time-varying characteristics. The data-driven model is a 
method to mine the inherent laws hidden of a research 
object from data information, which stiffs to overcome the 
difficulty of the mechanism model of complex systems 
[6-10]. To address the sensitive and chaotic properties of 
cyanobacteria blooms in lakes and reservoirs, the existing 
multifactor chaotic prediction models can be used for ref-
erence in finding the delay time and embedding dimension 
[11,12]. Understanding how to construct the framework of a 
data-driven model from the perspective of systematization 
needs to be explored. This study provides a systematic mod-
eling process, including the choice of modeling factors, data 
cleaning, and optimization and determination of the model 
parameters on a nonlinear time-varying object. The follow-
ing contributions are made:

•	 We proposed the definition of a correlation coefficient to 
comprehensively consider the trend consistency of a time 
series and the structural similarity of state characteristics 
on cyanobacteria blooms in lakes and reservoirs to select 
the key factors during the formation of cyanobacteria 
blooms.

•	 After data reconstruction for the phase space of the time 
series, we improved the clustering algorithm by coor-
dinating distance, similarity, horizontal migration, and 
amplitude expansion as a comprehensive metric scale of 
similarity to select and identify the local neighborhood of 
the prediction center.

This study is organized as follows: Section 2 introduces 
the theory and construction framework of the prediction 
model. Section 3 presents the experiments and comparisons 
of different models. Section 4 provides conclusions.

2. Theory and construction of the framework

2.1. Selection of the influencing factors for modeling

The characterization factors of cyanobacteria blooms in 
urban lakes and reservoirs are chlorophyll-a concentration 
and algae density, which are closely related. Although the 
online and real-time monitoring of chlorophyll-a concen-
tration is convenient, the cost of online monitoring of algae 
density is high. Because chlorophyll-a concentration not 
only can characterize the algae stock [13] but also can reflect 
the physical, chemical, and biological indicators of water, it 
is used as a characterization factor for the formation process 
of cyanobacteria blooms in lakes and reservoirs.

Many factors influence the formation of a cyanobacteria 
bloom, including pH value, temperature, TN and TP, and 
dissolved oxygen (DO). The selection of modeling factors 
directly affects the accuracy of the model. Therefore, in this 
study, we proposed the definition of a correlation coefficient 
to screen the key factors to improve the final prediction accu-
racy by selecting the information with a strong correlation.

2.1.1. Consistency of trends in time-series change

For the chlorophyll-a concentration time series, X0 = {x0(t), 
t = 1, 2,…, N} as the characterization factor, and the other 
influence factor time series Xh = {xh(t), h = 1, 2,…, M} acquired 
in the same period. We calculated the proximity of the curve 
slopes of the two-time series at each moment. If it was equal 
or smaller, the change trend of the two-time series was more 
consistent.

The consistency of the change trend is expressed as 
follows:
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and α(1)(yh(t + 1)) = yh(t+1)–yh(t). Corr(h) is the consistency 
coefficient of the variation trend between the hth influenc-
ing factor and the characterization factor, which reflect the 
consistency of the variation trend between the time series of 
the characterization factor and the influencing factor.

2.1.2. Relevance of structural similarity of state 
characteristics

Autocorrelation is a unique property of time series, which 
is represented by the correlation of characteristic structures 
of time-series state characteristics at different times.

For the other influence factor time series Xh = {xh(t), h = 1, 
2,…, M}, take t and s∈N, and the autocorrelation coefficient 
Auco(t, s) of the sequence is as follows:

Auco Auco
sqrt

h t s
E x t x s

t s
h h

h h

( ) = ( ) = ( ) −( ) ( ) −( )
( ) ⋅ ( )( )

,
µ µ

Dx Dx
 (2)

where µ is the mean of the sequence, E is the mathemati-
cal expectation, and D is the variance. Auco(h) is the auto-
correlation coefficient of the hth influencing factor, which 
reflects the structural similarity of state characteristics of 
the influencing factor.

The time series of the characterization factor can be 
calculated similarly. The autocorrelation coefficient is Auch 
for the time series of the characterization factor X0 = {x0(t), 
t = 1, 2,…, N}.

2.1.3. Definition of a correlation coefficient

The greater the consistency of the changing trend 
between the influencing factors and the characterization 
factors, the more consistent the changing trend of the time 
series of the two factors will be. The smaller the correlation 
coefficient difference between the influencing factors and the 
characterization factor, the more similar the state characteris-
tics will be. On the basis of the previous two indicators, the 
correlation coefficient is defined as follows:
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where Auch is the autocorrelation coefficient of the char-
acterization factor chlorophyll-a. Sico(h) is the correlation 
coefficient between the hth influencing factor and the charac-
terization factor. The larger Sico(h) is, the greater the correla-
tion between the influencing factor and the characterization 
factor.

In this study, we selected the key factors that had the 
greatest correlation with the characterization factors for 
modeling research. We selected the factors corresponding to 
the maximum correlation coefficient as the key factors in the 
formation process of cyanobacterial blooms and constructed 
a multifactor time-series model.

2.2. Data filtering based on wavelet

Time series data with noise inevitably are disturbed by 
various factors, such as instruments and the environment, in 
the measurement process. It is essential to effectively filter 
and preprocess the time-series data for the precision of the 
prediction model.

Time-series data for the sensitive chaotic properties of 
cyanobacteria blooms in lakes and reservoirs have spikes 
and mutations. Therefore, it is difficult for traditional filter-
ing methods to distinguish the intrinsic random-like signals 
and extrinsic high-frequency noise. A wavelet theoretically 
can distinguish noise from real signals by carefully selecting 
the threshold or threshold function, and retaining the effec-
tive components in the original data to the greatest extent 
[14,15]. This signal, however, may be distorted by using the 
universal threshold with the wavelet coefficients. To avoid 
this problem, the thresholds on different decomposition 
scales should be different to adapt to the noise distribution 
at each level.

Therefore, we proposed an improved threshold selection 
method. The formulation is represented as follows:
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where	 σ	 is	 the	 standard	 variance	 of	 the	 noise,	 σ	 =	medi-
an(WHH)/0.6475, WHH is the orthogonal wavelet coefficient 
of noise in a high-frequency sub-band and median means 
picking median, l is the decomposition scale, and nl is the 
signal length of the corresponding scale after wavelet trans-
form. With an increase in the decomposition scale l, the 
threshold decreases correspondingly. The new threshold T 
is adaptive and more in line with the distribution of noise 
at all levels.

The hard threshold method in the threshold function 
can preserve local features, such as edge of signal, but dis-
continuity after filtering will cause the filtering result to 
have a large variance. Although the soft threshold method 
is continuous at the threshold point and the filtering result 
is relatively smooth, it shrinks all of the coefficients that are 
larger than the threshold. This causes the filtering result to 
deviate significantly, which then affects the filtering effect. To 

overcome the shortcomings of the previous two methods, we 
proposed a new threshold function:
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where k	is	layers	of	decomposition,	ωl,k is wavelet coefficients, 
,ωl kˆ 	 is	 the	wavelet	 coefficients	 after	de-noising,	 ζ	 and	u are 

tune	parameters,	ζ∈(0,1), the general value of u is 1, and T 
is a constant threshold.

2.3. Phase-space reconstruction of time series

For the multifactor time series, Xt = (x0,t, x1,t,…, xM,t), 
t = 1,2,…, N, and the phase-space reconstruction is as follows:
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where i m N
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1 1τ  ,	τv and mv are, respectively, 

delay time and the embedding dimension of the time series 
for factor v.

The selection of the embedding dimension and the 
delay time for a chaotic time series based on the phase-
space reconstruction of multiple factors is significant. If the 
selected embedding dimension is too small, some points 
belonging to different parts will intersect in small neigh-
borhoods of regions and result in a greater prediction error. 
If the selected embedding dimension is too large, the histori-
cal data needed for phase-space reconstruction will increase 
and the rounding error and noise will have a greater impact 
on the results, which would result in greater prediction 
error.

This study synthesized the C–C method, mutual infor-
mation method, and minimum prediction error method to 
optimize the selection of an embedding dimension and delay 
time. The specific steps are as follows:

•	 We selected the delay time of each factor in a multiple 
factors time series according to the mutual information 
method.

•	 We selected the delay time of each factor in a multiple 
factors time series based on the C–C method.

•	 We matched the range of the embedding dimensions 
of a two-set time series from the low to the high end of 
the delay time, which was calculated before the phase-
space reconstruction. Then, we determined the nearest 
neighborhood point of the prediction center based on the 
Euclidean distance method.

•	 We used the next evolutionary point in the nearest neigh-
bor point of the local linear regression model as the pre-
diction value and then calculated the average one-step 
prediction error square.
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•	 We repeated steps 3 and 4, and iterated the process 
until we reached the maximum embedding dimension. 
We determined the optimal embedding dimension and 
delay time-based on the minimum square of error of the 
average one-step prediction.

2.4. Local neighborhood determination based on 
clustering analysis

We identified the typical evolutionary modes of the 
system by clustering and then extracted samples with that 
had a high similarity to the prediction points for approxi-
mation. Then, we improved the accuracy of the prediction 
while greatly reducing the computational load of model-
ing and simulation [16]. The traditional clustering method 
[17,18] used Euclidean distance to measure the correlation 
between phase points. For the sensitive chaotic properties 
of cyanobacteria blooms in lakes and reservoirs that repre-
sented fractal similarity, this study proposed a function to 
integrate four similar features at a scaled metric to quan-
tify the similarity and select the local neighborhood of the 
prediction center by a clustering algorithm.

2.4.1. Conventional correlation measurement method

2.4.1.1. Distance method

The conventional distance method uses the modulus of 
vector difference to describe the similarity between points.

Let the difference modulus of the two reconstructed 
phase vectors Xi and Xj be R X Xi j,( ); the smaller the value 
is, the closer the two phase points are. To map the value of 
R X Xi j,( ) to the interval [0, 1], a function Y X Xi j,( ) is set up:
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i j
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where Y X Xi j, ,( )∈  0 1 .

2.4.1.2. Similarity measure method

Relevance analysis is a method used to analyze the sim-
ilarity between the two reconstructed phase vectors. It is 
described by the angle between vectors. Let the angle between 

Xi and Xj be θ θ πX X X X
X X
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To map the value of θ X Xi j,( ) to the interval [0, 1], 
a function g X Xi j,( )  is set up:

g X X
X X

i j

i j

,
,

( ) =
+ ( )

1
1 θ

 (8)

where g X Xi j, ,( )∈  0 1 .

2.4.2. Similarity transformation

The orderliness of chaotic systems is represented by 
the similarity of fractals with different sizes. To effectively 
identify the performance similarity of structural propor-
tions, it is necessary to measure the amplitude and range of 
similarity fluctuation.

2.4.2.1. Horizontal migration

Horizontal migration is the amount of migration that 
fluctuates around mean values. It is critical for exploring and 
determining the specific fractal morphology of cyanobacte-
rial blooms. In this study, we used the difference between the 
mean phase points to represent the horizontal migration. The 
horizontal migration expression of time-series phase points 
is as follows:
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where α X Xi j, ,( )∈  0 1  is the horizontal migration of phase 

vectors Xi and Xj, µ Xi( ) and µ Xj( ) are average values, and 
σ Xi( ) and σ Xj( ) are mean-variance, respectively.

2.4.2.2. Amplitude expansion

The reconstructed phase point data appear to be similar 
on the surface, but in fact, their fluctuations are not the same. 
Amplitude expansion is used to scale the relative magni-
tude of shape between two-phase points. It is necessary to 
measure its scale of amplitude expansion. The expression of 
magnitude dilation is as follows:
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where β X Xi j, ,( )∈  0 1   is the amplitude expansion of Xi 
and  Xj.

2.4.3. Comprehensive metrics scale

On the basis of the calculated distance, similarity, hori-
zontal migration, and amplitude dilation of phase points, we 
proposed a comprehensive metric to measure the similarity 
between phase points. The expression is as follows:

f X X Y X X g X X X X X Xi j i j i j i j i j, , , , ,( ) = ( ) + ( ) + ( ) + ( )ω ω ω α ω β1 2 3 4
 

 (11)

where f X Xi j,( ) is the comprehensive metric of Xi and Xj. 
The larger the value is, the more similar the phase points are. 
To	satisfy	the	requirements,	ω1,	ω2,	ω3,	and	ω4 are the corre-
sponding weights:
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ω ω ω ω1 2 3 4 1+ + + =  (12)

By adjusting the weights, we adjusted the focus of dis-
tance, similarity, horizontal migration, and amplitude expan-
sion on the measurement of the similarity between phase 
points. It was convenient to synthesize four features flexibly 
to measure the similarity of the phase points for the study of 
complex systems with fractal self-similarity characteristics. 
Here,	ω1	=	ω2	=	ω3	=	ω4 = 0.25.

2.5. First-order local linear regression prediction model

After determining the nearest local neighborhood of the 
phase points generated by cyanobacteria blooms in lakes and 
reservoirs, we constructed the chaotic first-order local recur-
sive function as follows:

X A B Xt t t t+ = +1  (13)

where At, Bt are the coefficient matrix obtained by least-
squares estimation recursion based on local adjacent domain 
data.

3. Example analyses

3.1. Data source

The data obtained were from cyanobacteria blooms 
monitored at Jinshu station, Taihu Lake, Jiangsu Province, 
China. The specific indicators and units are given in Table 1.

We monitored 2,142 groups of data in cyanobacteria 
blooms every 4 h, from January 1, 2011, to January 3, 2012. 
The small sampling interval was good for capturing the 
time-varying dynamic characteristics of the system. In addi-
tion, the sensitivity of chaos relative to the initial value of the 
system demonstrated that its prediction ability was limited, 
which led to the short-term prediction of the chaotic system 
and to long-term inaccuracy.

In this study, to reserve a certain regulation time for early 
warning decision-making processes, we predicted chloro-
phyll-a concentration 3 d in advance (that is, the next 18 sam-
pling time values are predicted). From the perspective of data 
modeling in the information field, we needed to accumulate 
a complete period of data before modeling. We selected two 
periods with a certain fluctuation of chlorophyll-a concentra-
tion to test the feasibility of this model. Modeled with about 
75% of the data and predicted the following 3  d, modeled 
with about 85% of the data and predicted the following 3  d.

3.2. Selection of key influencing factors

According to the correlation coefficient analysis, we 
obtained the variation consistency coefficient between the 
time series of characterization factors and each time series of 
influencing factors, as shown in Table 2.

We also calculated the autocorrelation coefficients of the 
factors influencing the formation of cyanobacteria blooms, as 
shown in Table 3.

We calculated the correlation coefficient between the 
characterization factors and the influencing factors to deter-
mine the key influencing factors of cyanobacteria bloom for-
mation process, as shown in Table 4.

According to Table 4, the correlation coefficient between 
the time series of TN concentration and the characterization 
factors was the largest when comprehensively considering 
the consistency of the trend and the structural similarity 
of state characteristics in the time series. The key influ-
encing factors affecting the chlorophyll-a concentration 
were TN and the TP concentration. After consulting the 
advice of experts in the field, we established a prediction 
model based on the time series of the TP and chlorophyll-a 
concentration.

3.3. Evaluation analysis with data cleaning and de-noising

Results of the wavelet threshold de-noising of the time 
series are shown in Table 5.

Table 1
Formation influence factor of cyanobacteria bloom

Name of factors Temperature pH DO TN TP Chlorophyll-a concentration

Unit °C Dimensionless mg/L mg/L mg/L mg/L

Table 2
Consistency of trends in time series

Influence factor Temperature pH DO TN TP

Consistency of trends in time series 0.8739°C 0.9084 0.9194 0.9379 0.9022

Table 3
Autocorrelation coefficient

Influence factor Temperature pH DO TN TP Chlorophyll-a concentration

Autocorrelation coefficient 0.0968°C 0.0807 0.0918 0.0762 0.0759 0.0673
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From Table 5, both the SNR and the mean square error 
are better with the improved threshold and the threshold 
function.

3.4. Phase-space reconstruction of the multifactor time series

We determined the delay time in the multifactor time 
series according to the mutual information method. The 
delay	time	for	chlorophyll-a	concentration	was	τ1 = 15 and TP 
concentration	was	τ2 = 15. According to the C–C method, the 
delay	time	for	chlorophyll-a	concentration	was	τ1 = 7 and the 
TP	concentration	was	τ2 = 6.

We set the embedding dimensions for time series as 
an integer from 2 to 10. According to the delay time range 
obtained by the C–C and mutual information methods, we 
calculated the average one-step prediction error square by 
matching the different embedded dimensions. When the 
average one-step prediction error square was the smallest, 
the corresponding optimal embedding dimension and delay 
time were as follows: the embedding dimension of chloro-
phyll-a concentration time series was m1 = 3, and the delay 
time	was	τ1 = 7; the embedding dimension of TP concentra-
tion time series was m2	=	2,	and	the	delay	time	was	τ2 = 6.

3.5. Prediction model

In the phase-space reconstruction of multiple factors 
based on the optimized embedding dimension and delay 
time, we used the metric scale introduced in Section 2.4 to 
improve the clustering algorithm of data with sensitive cha-
otic properties to determine the local neighborhood of the 
prediction center. The predicted results are shown in Fig. 1.

Fig. 1 shows that this model can predict the rising and 
falling trends of chlorophyll-a concentration, providing fea-
sible lead time for early decision-making and regulation. 
To verify the validity of the multifactor prediction model 
proposed in this study, we established and tested a single- 
factor and multifactor prediction models, as well as a tradi-
tional hierarchical clustering method. We recently used the 
more popular long short-term memory (LSTM) model for 

comparison. The LSTM model consisted of three hidden lay-
ers with 20 memory cells in each layer. We used the sigmoid 
function and tanh function as activation functions. The win-
dow length was 6 and the training times were 100. In this 
study, we selected the average relative error as the evaluation 
index of the model. The average relative errors of different 
prediction models are shown in Table 6.

As shown in Table 6, compared with the single-factor 
model, the multifactor time-series model was better and 
provided more abundant modeling information to describe 
the evolution of the system. This showed that the proposed 
method based on similarity was more suitable for the time 
series of cyanobacteria blooms in lakes and reservoirs with 
sensitive chaotic properties.

LSTM is a kind of time-recurrent neural network, which 
is suitable for processing and predicting time-series infor-
mation with relatively long intervals and delays. We lim-
ited the LSTM model by a single factor and its prediction 
accuracy was slightly lower. Although the LSTM model with 
multiple factors was superior to the traditional method, it 
was slightly lower than the model used in this study. This 
may have been due to the fact that fewer multicycle inten-
sive data had accumulated for the cyanobacteria blooms in 
the lakes and reservoirs compared with the time-series infor-
mation. This affected the application effect of the model.

To verify the validity and applicability of the proposed 
algorithm, we downloaded public datasets from the GLEON 
network (Where the Southeast Environmental Research 
Center at Florida International University operates a net-
work of 331 fixed sampling sites distributed throughout the 
estuarine and coastal ecosystems of south Florida. The pur-
pose of this network is to address concerns in regional water 
quality which cross and overlap separate political boundar-
ies. Funding has come from different sources with individ-
ual programs being added as funding became available). The 
locations included (a) Tarpon Bay and (b) Oyster Bay. We 
sampled the data at equal intervals, with a sampling period 
of 1 month, and the data had accumulated for more than 10 y.

After analysis and optimization of the modeling data, 
we obtained the embedding dimension and delay time of 

Table 5
Evaluation and comparison of de-noising effect

Experimental data (methods) SNR (dB) Mean square error

Chlorophyll-a concentration time-series data (general threshold and soft threshold function) 14.8978 1.1484
Chlorophyll-a concentration time-series data (general threshold and improved threshold function) 16.4998 0.7941
Chlorophyll-a concentration time-series data (improved threshold and improved threshold function) 21.1500 0.2722
TP concentration time-series data (general threshold and soft threshold function) 12.3062 7.3041e–5
TP concentration time-series data (general threshold and improved threshold function) 9.0514 1.5454e–4
TP concentration time-series data (improved threshold and improved threshold function) 19.4075 1.4238e–5

Table 4
Correlation coefficient

Influence factor Temperature pH DO TN TP

Correlation coefficient 29.6237 67.7910 37.5265 105.3820 104.9070
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the corresponding location, respectively: (a) Embedding 
dimension of the chlorophyll-a concentration time series is 
m1	=	3,	and	the	delay	time	is	τ1 = 5; the embedding dimension 
of TP concentration time series is m2 = 3, and the delay time 
is	τ2 = 4. (b) The embedding dimension of the chlorophyll-a 
concentration time series is m1	=	3,	and	the	delay	time	is	τ1 = 5; 
the embedding dimension of TP concentration time series is 
m2	=	6,	and	the	delay	time	is	τ2 = 4.

Fig. 2 shows that the prediction trend was better than 
that for Taihu Lake in this paper. This may have been due 
to the fact that although the data volume accumulation for 
these two sites was small, the time span was long, which 
benefited the learning of the cyclical change mode. In this 
study, the data volume for Taihu Lake appeared to be rela-
tively large, but it had only one year’s periodic accumula-
tion. This two bays accumulated long-term data with the 

(a)

(b)

Fig. 1. Results of the prediction based on an improved clustering method with key influencing factors. Prediction results from (a) 
1,640th and (b) 1,860th monitoring data.
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longer sampling period, but the amount of accumulated 
data is small. It is not suitable to use LSTM algorithm which 
needs more data. The average relative errors of different 
prediction models are shown in Table 7. From the point 
of view of data science, the pattern with fewer samples 
was insufficient for learning, which was not conducive to 
improve its recognition ability.

4. Conclusion and future work

If a certain area has less accumulated historical empirical 
rules, we can use data-driven methods to build an early warn-
ing prediction model, which would save the cost of accumu-
lated experience. In addition, we can reduce the variables 
involved in modeling to reduce the economy and time cost 
of sensor acquisition and maintenance. Typically, to predict 
cyanobacterial blooms in lakes and reservoirs, data-driven 
prediction models can be constructed theoretically according 
to the single-factor time series. Although this approach has 

practical applications, it is often difficult to obtain complete 
information for complex dynamic systems.

Therefore, the key factors needed to match the character-
ization factors for cyanobacteria blooms in lakes and reser-
voirs can be screened according to the algorithm proposed in 
this study. Furthermore, we proposed a systematical frame-
work process to construct a multifactor data-driven predic-
tion model to better study evolutionary characteristics. The 
main process is as follows:

•	 The factors involved in modeling directly affected the 
accuracy of prediction. Therefore, this study proposed a 
definition of the correlation coefficient. We determined 
the key factors influencing the formation process of cya-
nobacteria blooms in lakes and reservoirs based on the 
correlation of the consistency of the change trend and the 
structural similarity of state characteristics.

•	 For modeling data with sensitive chaotic properties and 
inevitable noise, this study improved the traditional 

Table 6a
Prediction error of different models

Name of model Average relative error
Single-factor prediction model based on traditional hierarchical clustering method 0.1906
Single-factor prediction model based on LSTM 0.2310
Two-factors prediction model based on LSTM with key influencing factors 0.2277
Two-factor prediction model based on improved clustering method with key influencing factors 0.1797

Table 6b
Prediction error of different models

Name of model Average relative error

Single-factor prediction model based on the traditional hierarchical clustering method 0.2090
Single-factor prediction model based on LSTM 0.2310
Two-factor prediction model based on LSTM with key influencing factors 0.2303
Two-factors prediction model based on improved clustering method with key influencing factors 0.1585

Table 7a
Prediction error of different models

Name of model Average relative error
BP neural network prediction model 0.5317
Single-factor prediction model based on traditional hierarchical clustering method 0.5127
Two-factor prediction model based on improved clustering method with key influencing factors 0.3545

Table 7b
Prediction error of different models

Name of model Average relative error

BP neural network prediction model 0.4391
Single-factor prediction model based on traditional hierarchical clustering method 0.3747
Two-factor prediction model based on improved clustering method with key influencing factors 0.2725
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wavelet threshold and threshold function. The result of 
this evaluations showed that it had good effectiveness 
and applicability for the pretreatment of data in cyano-
bacterial blooms in lakes and reservoirs.

•	 We determined the range of the embedding dimension 
and the delay time for each of the factors involved in 
modeling based on the phase-space reconstruction of 
single-factor time series. Then, we optimized the embed-
ding dimension and delay time of the phase-space 

reconstruction of the multifactor time series using an 
iterative algorithm according to the C–C method, mutual 
information, and the minimum prediction error method.

•	 We used an improved hierarchical clustering method to 
determine the point sets in the phase-space reconstruc-
tion to prepare for the multifactor prediction of the sub-
sequent modal division. This method was able to more 
flexibly adapt to the diversity and complexity of the 
trans-scale evolution model of the cyanobacteria blooms 

(a)

(b)

Fig. 2. Prediction results with key influencing factors for the GLEON data. Prediction results for (a) Tarpon Bay and (b) Oyster Bay.
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in lakes and reservoirs. The proposed comprehensive 
characteristic scale function was also more flexible than 
the Euclidean distance to measure the intraclass distance.

•	 We used the first-order local linear regression algorithm 
to establish the local prediction model of multifactor cha-
otic time series after determining the local neighborhood 
of the prediction points.

For the sensitive characteristics of cyanobacteria blooms 
in lakes and reservoirs, we synthesized a new clustering 
measure scale. We explored a similarity identification of the 
cyanobacteria blooms in lakes and reservoirs. We studied 
the data from the perspective of data mining and found that 
the amount of data, the accumulated data period, and the 
sampling interval all had an important impact on model 
building. In the future, we will identify an appropriate 
sampling interval and time to capture information, combine 
the data-driven model with a better explanatory ability and 
predictive effect. The establishment of a prediction model 
for cyanobacterial blooms in lakes and reservoirs provides 
the basis for early warning decision-making.
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