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a b s t r a c t
Raw water after chlorination disinfection will produce a variety of chlorinating organic compounds, 
known as disinfection by-products (DBPs). After investigation, the main DBPs exceeding the standard 
in northeast China is trichloroacetaldehyde (CH) stipulated in the standards for drinking water qual-
ity (GB5749-2006). However, the scale of water treatment plants in such areas is mostly smaller than 
5 × 104 t/d and due to the problems of testing capacity and cost, the detection of CH cannot be realized. 
Once the raw water quality changes, the safety of the factory water quality cannot be guaranteed. In 
this paper, chlorination experiments were carried out on the raw water of the Mopanshan Reservoir in 
cold areas of northeast China, which contained a high level of natural organic matter. Multiple linear 
regression analysis was used to conduct statistical analysis on the results, and the formation model of 
CH based on water temperature (T), pH, turbidity, chlorine dose (Cl) and permanganate index was 
established. It can provide a good way to predict the formation of CH in water treatment plants with 
similar raw water characteristics and disinfection methods in cold areas of northeast China.

Keywords:  Natural organic matter; Chlorination disinfection; Trichloroacetaldehyde; Disinfection 
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1. Introduction

Trihaloacetaldehyde is an important disinfection by-prod-
uct (DBP) formed during the chlorination process, and it’s the 
next (to trihalomethanes and haloacetic acids) most prevalent 
DBP in drinking water [1]. CH exists in the form of chloral 
hydrate in water [2]. Due to its potential carcinogenic risk 
and other toxicity [3], the maximum contaminant level of CH 
in the Chinese Environmental Protection Ministry (GB5749-
2006) is 0.01 mg/L [4].

Taking Harbin in northeast China as an example, its raw 
water is from Mopanshan Reservoir, located in the natural 
primitive forest region. Due to the vast upstream area of 
water source and the lush forest vegetation, the drinking 

water source is rich in natural organic matter, which is 
proved to be mainly humic acid (HA) and fulvic acid (FA), 
thus, it contains a high disinfection by-products formation 
potential (DBPFP) [5]. A new approach has been recently 
developed to remove intermediate halogenated aromatic 
DBPs by granular activated carbon (GAC) adsorption [6–8], 
instead of removing the organic matter (DBPFP) by GAC 
adsorption. However, the conventional treatment process 
adopted by the water plant cannot effectively remove the 
organic matter in raw water [9].

In this paper, drinking water from the Mopanshan 
Reservoir was disinfected after the process of coagulation–
sedimentation–filtration. According to the United States 
Environmental Protection Agency (U.S. EPA) Method 551.1 
[10], sampling was carried out for 36 consecutive months, 
and the main DBP that was found that is harmful to humans 
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was CH. In northern China, many water plants have sim-
ilar treatment practices and raw water characteristics to 
Harbin, all of which involve high levels of CH (>0.01 mg/L). 
Numerous studies have emerged during the last decades 
that use linear regression techniques or non-linear regression 
analyses to establish relationship models between the gener-
ation of DBPs and the indicators associated with chlorination 
processes such as total organic carbon, temperature, pH, and 
chlorine amount [11]. To effectively predict the production 
of CH and to better help water supply enterprises ensure the 
quality of finished water leaving the plant, it is necessary to 
establish a model relating to the raw water characteristics 
and treatment processes [11]. Due to the above reasons, in 
this study, a multiple regression analysis was used to estab-
lish a prediction model for CH by combining the chlorine 
dose and the main indicators that are routinely measured. 
This will be helpful in effectively controlling the generation 
of DBPs in the water treatment process by predicting the 
formation potential of CH, testing for it, and confirming its 
applicability.

2. Materials and methods

2.1. Sample

All samples concerned were from Harbin Pingfang 
Treatment Plant. The raw water comes from the Mopanshan 
Reservoir in the virgin forest, 180 km away from the water 
plant, which supplies water to nearly 3.4 million people and 
with a design capacity of 9 × 105 t/d. The conventional water 
treatment process including coagulation–sedimentation–fil-
tration–disinfection, and the disinfection process was carried 
out before entering the water distribution systems, the liquid 
chlorine was used as a disinfectant. Fig. 1 shows each unit 
process and the sampling point locates in the water distribu-
tion pump room.

All samples were continuously monitored from January 
2015 to February 2018 and samples were taken eight times a 
month. Samples of DBPs were dispensed into 100 mL brown 
glass bottles, and 0.1 g ascorbic acid and sodium thiosulfate 
were added. Typical data, including permanganate index 
(CODMn), turbidity, pH, and temperature were detected by 
using in-line sampling. The chlorine amount in the water 

plant was determined according to the actual amount of 
chlorine consumed by the plant. All sample vials were rinsed 
with tap water, washed with ultrapure water, and placed in 
an oven at 150°C for 2 h. After sampling, the bottles were 
stored in a dark environment at 4°C and brought back to the 
laboratory for analysis.

2.2. Analytical procedure

According to the requirements of the experiment, the 
main reagents and drugs to be used in the detection and 
analysis include CH, trichloroacetic acid and trichlorometh-
ane (TCM) standards (Brilliant Technology Co. Ltd., Beijing), 
methyl tert-butyl ether and methanol (chromatographic 
purity) (Anfu Scientific Instruments Co. Ltd., Shanghai). 
All reagents were used directly without further purification 
process. The experimental water was prepared by Millipore 
Milli-Q pure water system (resistivity ≥ 18.2 Ω cm). The 
glassware needed in the experiment was washed by ultra-
sound for 15 min, washed with tap water, and then washed 
with ultra-pure water 3 times, dried at 130°C for 24 h.

The detection methods of the main parameters used in the 
experiments include [12]: (1) CH: using Agilent GC7890B gas 
chromatography (Fairborn Precision Instruments Co. Ltd., 
Shanghai), chromatography column models for DB - 624, 
chromatographic column size was 30 m × 0.25 mm × 1.4 m. 
Split-flow injection (10:1) was used in the test process and the 
injection quantity was 1 µL, the temperature of the injection 
port was 200°C and the detector temperature was 250°C, the 
airflow control in 60.0 mL/min, hydrogen flow at 2.0 mL/min. 
High purity nitrogen was used as a carrier gas, the flow rate 
was 30.0 mL/min, the standard recovery rate was 102.4%, and 
the precision was 3.21%. (2) Turbidity: using Hashan 2100 
turbidity meter, scattering light spectrophotometry method 
was carried. (3) pH: using Hashan 2100 turbidity meter, the 
glass electrode method was carried. (4) Permanganate index: 
by using the potassium permanganate oxidation method.

2.3. Data set

In this study, the raw water and finished water in 2015–
2019 were monitored, according to environmental quality 

Fig. 1. Harbin Pingfang treatment plant, flow chart and sample collection point in water pumping house.
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standards for surface water, 109 indicators were continuously 
monitored, among them, the indicators with large fluctuation 
range were temperature (T), pH, turbidity (TD), CODMn, the 
above indexes are also the indexes that are generally con-
cerned by water treatment plants. In combination with the 
chlorine dose (Cl), the predictive relationship between each 
index and the amount of CH produced in finished water can 
be established. No CH was detected in raw water, so the back-
ground value can be counted as zero in the calculation pro-
cess, and the relationship between the concentration of CH  
and the variable factors is more direct. Also, studies have 
shown that bromine has a certain effect on the formation 
of DBPs, but no bromine was detected in raw water. The 
chlorine dose was based on the measurement method com-
monly used by water treatment plants in China, CODMn is 
used to reflect the organic matter in water. It is an important 
 parameter for water supply enterprises in China to master 
the water quality of raw water at present. Since there was no 
change in the operating time of the water plant disinfection 
(30 min), the disinfection residence time was not considered.

It can be seen from Table 1 that there are 374 sets of data, 
among which data are collected 4 times per month, and the 
average value is taken as the monthly collection value of the 
corresponding year, and a total of 95 sets of data are sorted 
out. Also, we adopt multiple regression analysis meth-
ods to establish CH formation model [13], considering that 
Heilongjiang Province has significant seasonal characteris-
tics, especially the unique climate characteristics of northeast 
China in winter, so for the four distinct levels (seasons) that 
individually affect the dependent variable (CH), one dummy 
variable [autumn and winter (AW), the period was from 
September to February] was defined [14]. For example, the 
values of the dummy variable AW are: 

AW
if thecollecteddatawere theautumnandwinterseason

otherwi
=

1

0 sse






.

3. Results and discussion

The focus of this study is that the data used in regression 
analysis have the regional characteristics of water quality in 
northeast China, all monitoring data were obtained from the 
Harbin monitoring sub-center of national urban water qual-
ity monitoring center. According to the range, mean value 
and standard deviation of the variables shown in Table 1. The 
raw water temperature (T) in the plant ranged from 2.3°C to 

23.8°C, the pH value varied from 6.6 to 7.1, while the TD var-
ied from 0.55 to 6.37 NTU, the chlorine dose (Cl) was lying 
in the range of 1.4–2.0 mg/L and CODMn ranged from 2.72 to 
6.48 mg/L. It is important to note that T (2.3°C–23.8°C) with 
mean 10.72°C, TD (0.55–6.37 NTU) with mean 1.993 NTU 
and CODMn (2.72–6.48 mg/L) with mean 3.94 mg/L have a 
wide range of changes in above variables, mainly occurred in 
spring when the ice in the reservoir area starts to melt and in 
summer when the annual rainfall is large, while the ranges of 
Cl and pH were rather narrow.

The results show that CH was detected in the water 
samples, and almost all of them exceed the standard limit 
(0.01 mg/L) of the drinking water standards of China. 
At present, most of the literature studies mainly focus on 
TCM [15], so we refer to the research methods of TCM to 
study whether there is a correlation between CH and the 
above five variables. The variables were tested for normality, 
the Kolmogorov–Smirnov (K–S) test [16] was used to test the 
goodness of fit to the normal distribution based on the null 
hypothesis H0: the random sample has the normal distribu-
tion, with unspecified mean and variance and the alternative 
hypothesis Ha: the distribution function of the sample is not 
random. The results of the normalization of the variables 
including CH content, CODMn, temperature (T), pH, chlorine 
dose (Cl) and turbidity (TD) (in the purpose of eliminating 
dimensional influence, the logarithm of each variable was 
used for calculation) are shown in Table 2, and the variables 
are not subject to normality by K–S normality test.

The correlation matrix between all the variables (the vari-
able capacity is 95) is given in Table 3. CH is significantly 
and positively correlated with chlorine dose (r = 0.311) and 
pH (r = 0.375), respectively, which shows that the pH and 
the dosage of chlorine could promote the formation of CH. 
However, CH has a weak correlation with TD (r = 0.168), 
T (r = –0.012) and CODMn (r = –0.023), respectively. In addi-
tion, the chlorine dose has a positive correlation with TD 
(r = 0.348), T (r = 0.377), CODMn (r = 0.390), and the TD has a 
positive correlation with T (r = 0.459), CODMn (r = 0.242) and 
pH (r = 0.231), statistically means that an interaction may 
exist between some of the two independent variables. Hence, 
the relationship between the mean value of the dependent 
variable (CH) and one of the independent variables is depen-
dent upon the value of the other independent variable.

Covariance analysis was used to judge whether the for-
mation of CH is influenced by season [17]. Covariance analy-
sis requires the dependent variable (CH) subject to normality 

Table 1
Range of variables, the means and the standard deviations

Variables Number of  
observations

Min. Max. Mean Standard  
deviation

CH (mg/L) 374 0.0020 0.0430 0.0139 0.0067
Chlorine dose (Cl) (mg/L) 374 1.14 2.03 1.53 0.1844
pH 374 6.00 7.90 6.88 0.2159
Turbidity (TD) (NTU) 374 0.288 114.000 1.993 7.5888
Temperature (T) (°C) 374 0.41 23.80 10.72 5.7772
CODMn (mg/L) 374 1.60 7.68 3.94 0.8617
Autumn and winter (AW) 374 0 1 0.24 0.425
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and without abnormal value under each group of fixed 
factors (AW) under classification, it also requires to satisfy 
that fixed factor have no interaction with covariate variable 
(T) and the above two conditions can be tested by the test 
of homogeneity of variances. With the aid of SPSS software, 
the grouping variable (AW) was used for factor variable, the 
temperature (T) was used as a concomitant variable, the test 
results of normality, linearity, homogeneity, and interactiv-
ity are shown in Tables 4 and 5. It can be seen from Table 
4 that the values of ln(CH) in different groups have passed 
the K–S normality test, and both of the linear goodness of 
fit of ln(CH) and ln(T) under different grouping conditions 
have exceeded 0.9 (R2 = 0.936, 0.922 respectively), so it can 
be seen that CH has passed the normality and linearity test. 
Also, according to the P-value of the homogeneity test [18] 
in the first row of Table 5, the null hypothesis (H0: the two 
sets of data come from the same sample) is accepted at the 
significance level of 0.05 (P = 0.150 > 0.05), that is, the two 
sets of data are with homogeneity of variance. According to 
the interaction test in the second row, the P-value (p = 0.668) 
is greater than the significance level of 0.05, indicating that 
the seasonal dummy variable (AW) and ln(T) have no inter-
action. Finally, the boxplot was drawn. It can be seen that 
ln(CH) has no outliers in each group. Thus can undertake 
the covariance test (ANCOVA) [19], the results are shown in 
Table 6, in the third row of Table 6, P-value (P = 0.000 < 0.05) 
shows that under the condition of the significance level of 
0.05, AW passed the significance test, so it indicates that the 
dummy variable (AW) has an impact on CH content after 
excluding the influence of water temperature.

By observing the scatter plots between the dependent 
variable and independent variables, it can be found that it’s 
unable to specify a better relationship between the dependent 

variable and independent variables, therefore, to prelimi-
narily screen the independent variables’ form, the curve fit-
ting model between a dependent variable and independent 
variables is considered. As shown in Table 7, the ln(CH) and 
five independent variables were fitted with linear, inverse, 
quadratic and cubic polynomial models respectively, the val-
ues in the table are the goodness of fit of the corresponding 
model [20], F statistic value and its corresponding P-values, 
significance test P-value of the corresponding parameter of 
each model, in this paper, the initial variable form is finally 
determined by integrating the three indexes of the goodness 

Table 2
Estimation of goodness of fit to the normal distribution

Variables ln(CH) ln(Cl2) ln(pH) ln(TD) ln(T) ln(CODMn)

Variable capacity 95 95 95 95 95 95
Test statistic 0.066 0.075 0.048 0.089 0.092 0.123
Asymp. Sig. (2-tailed) 0.200a,b 0.200a,b 0.200a,b 0.059a 0.044a 0.001a

aLilliefors significance correction
bLower bound of the true significance
Asymp. Sig. (2-tailed): asymptotic significance (2-tailed), a two-sided approximation of P

Table 3
Simple correlation between ln(CH), ln(Cl), ln(pH), ln(TD), ln(T), and ln(CODMn)

ln(CH) ln(Cl2) ln(pH) ln(TD) ln(T) ln(CODMn)

ln(CH) 1.000
ln(Cl2) 0.311b 1.000
ln(pH) 0.375b –0.025 1.000
ln(TD) 0.168 0.348b 0.231a 1.000
ln(T) –0.012 0.377b –0.147 0.459b 1.000
ln(CODMn) –0.023 0.390b –0.190 0.241a 0.347b 1.000

aCorrelation is significant at the 0.05 level (2-tailed)
bCorrelation is significant at the 0.01 level (2-tailed)

Table 4
Test of normality and linearity

AW K–S R2

Statistic Df Sig. R2 a Adjusted R2

ln(CH) 0 0.091 49 0.200 0.937 0.936
1 0.128 46 0.058 0.924 0.922

Df: Degrees of freedom
Sig.: Level of significance
aLinear regression through the origin

Table 5
Homogeneity and interaction test

Variable F P

ln(CH) 2.105 0.150
AW × ln(T)a 0.185 0.668

Significance level is 0.05
aInteraction between AW and T
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of fit, significance test and coefficient significance test of the 
model, as can be seen in Table 7, which are ln(Cl), (ln(Cl))2, 
(ln(Cl))3, ln(pH), (ln(pH))2, 1/ln(pH), ln(T), (ln(T))2, (ln(T))3, 
ln(CODMn), (ln(CODMn))2, (ln(CODMn))3. Among which, TD 
and CH only pass the coefficient test of the linear fitting, and 
their goodness of fit is very low, indicating that there is no 
obvious and commonly known relationship between ln(CH) 
and ln(TD), so the TD was not introduced in this model.

In this paper, considering that the five independent vari-
ables, as well as the seasonal variable, have interactions, which 
will influence CH content, so use the single-variable linear 
model analysis of SPSS to judge the interactions of variables 
[21], the results showed that ln(TD) and ln(T), ln(TD) and 
ln(CODMn), ln(T) and ln(CODMn) do have interactions, also, 

considering the effect of initial CH content on current CH 
content, therefore, the first-order lag term of CH (ln(CH))t–1  
is introduced.

In this paper, the stepwise regression method [22] was 
used to establish multiple regression model, the method 
of stepwise regression equations according to the sum of 
squares of partial regression and select the variables from 
the equation, so that the explanatory variables retained in 
the model are both important and not severely multicol-
linearity. We introduced a total of 17 independent variables 
obtained above and obtained the optimal set of explanatory 
variables through four stepwise regression. The model test, 
variance analysis table, and equation significance are shown 
in Tables 8 and 9. From these relationships, the following 

Table 6
Analysis of covariance (ANCOVA) and least square difference test for detecting differences among the seasons of the year for CH 
concentrations

Source Sum of squares Df Mean square F P

Model 1,799.652a 3 599.884 3,229.596 0.000
ln(T) 0.035 1 0.035 0.190 0.664
AW 109.441 2 54.720 294.599 0.000
Error 17.089 92 0.186
Total 1,816.741 95

aR2 = 0.991 (Adjusted R2 = 0.990)
Significance level is 0.05
Df: Degrees of freedom

Table 7
Selection of independent variable forms

Variables Equation Model summary Parameter significant estimates

R2 F Sig. b1(sig.) b2(sig.) b3(sig.)

ln(Cl) Linear 0.899 839.681 0.000 0.000
Inverse 0.897 821.126 0.000 0.000
Quadratic 0.980 2,262.011 0.000 0.000 0.000
Cubic 0.989 2,817.971 0.000 0.000 0.000 0.000

ln(pH) Linear 0.989 8,690.633 0.000 0.000
Inverse 0.991 10,579.23 0.000 0.000
Quadratic 0.992 5,644.055 0.000 0.000 0.000 0.000
Cubic 0.992 5,650.407 0.000 0.000 0.366 0.000

ln(TD) Linear 0.052 5.198 0.025 0.025
Inverse 0.001 0.070 0.791 0.791
Quadratic 0.098 5.044 0.008 0.819 0.033
Cubic 0.436 23.745 0.000 0.579 0.000 0.000

ln(T) Linear 0.930 1,255.674 0.000 0.000
Inverse 0.914 997.641 0.000 0.000
Quadratic 0.985 3,027.887 0.000 0.000 0.000
Cubic 0.989 2,812.915 0.000 0.000 0.000 0.000

ln(CODMn) Linear 0.975 3,722.965 0.000 0.000
Inverse 0.975 3,706.952 0.000 0.000
Quadratic 0.990 4,509.037 0.000 0.000 0.000
Cubic 0.990 3,176.683 0.000 0.000 0.001 0.014

Sig.: Level of significance
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equation can be deduced, in which the variables of water 
temperature and seasonal variable are excluded, indicating 
that although these two variables may have an impact on the 
content of CH, their effects are not obvious or do not have an 
impact on other variables, so they are not introduced into the 
equation in the stepwise regression method.

ln( ) . ln( ) .

ln( )
. (ln( ) )

CH CH

pH
Cl

t t

t
t

= × − ×

+ × −

−0 676 2 853
1 1 177 0

1

2
2 .. (ln( ) )062 3× CODMn t

From Table 8 we can see that the fitting degree of the 
model (R2 = 0.997, adjust R2 = 0.997), which shows that the 
model has 99.7% interpretability, furthermore, it can be 
found that the P-value of the analysis of variance (F-test) of 
the model is 0.000, which is significantly smaller than the 

significance level of 0.05, therefore the hypothesis that the 
population regression coefficient is 0 can be significantly 
rejected, that is to say, there is a linear relationship between 
dependent variables and independent variables in the estab-
lished model, which means that the model is valid. In the 
fourth row of Table 9, all the P-values of the coefficient signif-
icance test of all independent variables are less than 0.05, so 
the coefficient significance of the four variables is not 0, and 
all the parameters of the model are significant.

In addition to the passing of the significance test and the 
significance test of the coefficient of the above model, the mul-
tiple regression equation also requires the model to satisfy the 
residual normality, sequence irrelevance and homoskedas-
ticity, therefore, three properties of the model residuals are 
tested in this paper, these results are shown in Figs. 2–4, Fig. 2 
is the P-P diagram of residual normality test, Fig. 3 shows 
the heteroscedasticity test of residuals [23], the x-coordinate 

Table 8
Model test and analysis of variance (ANOVA)

Model summarya,b

R R2b Adjusted R2 Standard errors

0.998a 0.997 0.997 0.2552

ANOVAa,b

Sum of squares Df Mean square F Sig.

Regression 1,796.137 4 449.034 6,896.436 0.000
Residual 5.860 90 0.065
Total 1,801.997 94

arepresent for ln(CH)
bmeans linear regression through the origin
Df: Degrees of freedom
Sig.: Level of significance

Table 9
Regression coefficients, standard errors, t-values and level of significance for the multiple regression model of CH concentrations

Variables Unstandardized   
coefficients

Standardized 
 coefficients

t Sig.

Collinearity statistics

B Std. error Beta Tolerance VIF

1 (ln(CH))t–1 0.998 0.007 0.998 146.782 0.000 1.000 1.000
2 (ln(CH))t–1 0.753 0.068 0.753 11.027 0.000 0.009 113.879

1/ln(pH) –2.076 0.576 –0.246 –3.602 0.001 0.009 113.879
3 (ln(CH))t–1 0.696 0.068 0.696 10.273 0.000 0.008 122.797

1/ln(pH) –2.868 0.606 –0.340 –4.736 0.000 0.007 137.804
(ln(Cl))2 0.830 0.264 0.042 3.138 0.002 0.210 4.758

4 (ln(CH))t–1 0.676 0.067 0.676 10.029 0.000 0.008 125.570
1/ln(pH) –2.853 0.596 –0.338 –4.789 0.000 0.007 137.826
(ln(Cl))2 1.177 0.312 0.059 3.774 0.000 0.146 6.843
(ln(CODMn))3 –0.062 0.031 –0.040 –2.018 0.047 0.092 10.905

Df: Degrees of freedom
Sig.: Level of significance
B: Regression coefficients
Std. Error: Standard errors
Beta: Regression coefficients



X. Jiang et al. / Desalination and Water Treatment 191 (2020) 372–380378

is the predicted value of the model, the y-coordinate is the 
residual value of the model, Fig. 4 shows the sequence cor-
relation test of residuals [24], the abscissa is the first-order lag 
term of residuals, and the ordinate is the residuals, it can be 
seen from the Fig. 4 that there is no obvious linear trend, so 
the residuals do not have sequence correlation. To sum up, all 
the test indexes of the model constructed are qualified.

By using the above equation, 95 sets of data were fitted, 
Figs. 5a and b show that the predicted values have a high fit-
ting degree with the real values, the absolute value of its error 
mostly within 0.5, and the real values’ overall tendency is 
consistent with that of the predicted values. Model validation 

is settled by using data from January 2019 to June 2019, as 
shown in Figs. 6a and b. Fig. 6b shows that the test error of 
the absolute value is less than 0.006, the goodness of fit is 0.31 
so that the model has a certain prediction ability. The estab-
lishment of a multiple regression model is to obtain a better 
CH formation tendency, but because the multiple regression 
model itself has some defects such as multicollinearity, the 
model does not necessarily have a high accuracy.

Fig. 2. Normal probability plot for the multiple regression model 
of CH (P-P diagram of residual normality test).

Fig. 4. Serial correlation test of residuals.

 

 
                                     

 

(a)

(b)

Fig. 5. The goodness of fit of the model of the training set: pre-
dicted and measured values of CH (a) and validation of the 
model: predicted and measured values of CH (b).

Fig. 3. Normal probability plot for the multiple regression model 
of CH. Expected normal values vs. residuals.
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4. Conclusions

The CH concentration of reservoir water disinfected 
with chlorine in cold areas of northeast China was pre-
dicted by multiple regression analysis. The parameters cho-
sen here are generally conventional index used to evaluate 
water quality in China’s water plants, which has a certain 
universality. Therefore, we infer that this equation form can 
be used to provide water plants with similar raw water char-
acteristics and disinfection methods for CH concentration 
calculations.

In the established model, although the logarithmic form 
of various variables is adopted, so that the variation tendency 
of the logarithmic form is consistent with the original func-
tion. Therefore, according to the equation, the formation of 
CH is affected by the initial content of CH, the pH value, the 
chlorine dose, and CODMn. Specific analysis is as follows: 
the CODMn has a negative effect on the formation of CH, but 
the effect is not significant; The logarithm of the current pH 
value, the current chlorine dose and the initial concentration 
of CH in raw water have a positive effect on the logarithm of 
the current CH content, among which, the pH value and the 
chlorine dose have the most positively affection on the CH 
content.

Also, it must be noted that the complexity of the forma-
tion of the CH makes it difficult to establish a truly univer-
sally applicable model. The current model is limited to field 
data within a specific dataset. And for a wider range of appli-
cations, the recalibration process must be considered and the 
optimization technique was introduced to modify the coef-
ficient values. Besides, we need to recognize that this paper 
believes that the HA and FA are the precursors of CH [1]. 
However, studies have shown that the yield and rate of dif-
ferent precursors for CH are different. Therefore, in the view 
of the need to develop approaches of universal applicability, 
future modeling structures should focus on the use of differ-
ent precursor types and the relationship between them and 
raw water characteristics. In this direction, DOC and UV254 
seem to be reliable alternative indicators for characterizing 
organic precursors, since it has proved to be more widely 
used in experimental and simulated data, further research 
will be conducted in the future.
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