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a b s t r a c t
The aim of this research is to apply mathematical models for the solution of the one-dimensional 
convective–dispersive solute transport equation. For the derivation of the advection–dispersion 
equation it is assumed that the flow in the medium is unidirectional and that the average velocity is 
constant throughout the length of the flow field. Moreover, it is assumed that the porous medium is 
homogeneous and isotropic and that no mass transfer occurs between the solid and liquid phases. 
Unfortunately, the boundary conditions of the problem are not always intuitively apparent and in 
many cases convey uncertainties. For that reason, the problem is solved by utilizing fuzzy systems 
and fuzzy logic. The significance and the main advantage of this research is the introduction of 
fuzzy logic in order to solve similar problems presenting uncertainties. Since the aforementioned 
problem involves differential equations, a method of generalized Hukuhara derivative for total 
derivatives was applied, as well as the extension of the corresponding theory, concerning partial 
derivatives. So the fuzzy problem was transformed in a system of two classical differential equa-
tions, which were resolved with a Laplace transformation. The development of the fuzzy concen-
tration profile is presented, as well as the membership functions of concentration. The results have 
given some beneficial conclusions for the effects of the uncertainties. In conclusion, it is expected 
that this conception will help the researchers and the engineers to take the right decision in similar 
problems. It is a special effort in this research to solve an advection–dispersion equation presenting 
uncertainties in boundaries and to follow the effect of these uncertainties in time.

Keywords:  Advection–dispersion; Homogeneous porous medium; Fuzzy system; Partial differential 
equation; Concentration profiles

1. Introduction

Dispersion problems have been a subject studied by 
many investigators who are concerned with chemical constit-
uents moving through soil by various transport mechanisms. 
These mechanisms act simultaneously and incorporate 

processes such as convection, diffusion, and dispersion. 
As the pollution is spreading to the subsurface environment, 
the advection–diffusion problem has drawn the attention 
of many sciences like hydrology, civil engineering, soil 
physics, petroleum engineering, chemical engineering, and 
biosciences.
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Advection–dispersion through a medium is described 
by a partial differential equation of parabolic type and it 
is widely known as the solute transport equation. While, 
numerical solutions are often used in such problems, many 
times analytical solutions are also employed, giving a bet-
ter understanding of the transport mechanisms as well as 
estimating model parameters with inverse methods. The 
advection–dispersion equation of pollution incorporates the 
aforementioned transport mechanisms for the conservation 
of suspended materials. Initially, the governing equation 
was one-dimensional with a set of initial and boundary con-
ditions and has been solved considering uniform dispersion 
and velocity, with terms accounting for linear equilibrium 
adsorption, zero-order production and first-order decay. In 
order to obtain analytical solutions, researchers have tried 
to reduce the advection–diffusion equation into a diffusion 
equation, eliminating the convective term [1–3], and conse-
quently used the Laplace transformation technique to obtain 
the desired solutions. Apart from these pioneers, many 
others have developed numerous analytical solutions to 
describe the aforementioned one-dimensional convective–
dispersive solute transport [4–15]. Some one-dimensional 
analytical solutions have been provided that approach better 
real problems, by transforming the non-linear advection–
diffusion equation into a linear one for specific forms of the 
moisture content and hydraulic conductivity vs. pressure 
head [16]. Problems have been also presented, with vari-
able coefficients in a finite domain [17], with temporally 
dependent coefficients [18], for varying pulse-type input 
point source [19], using the variational iteration method and 
the homotopy perturbation method [20], and with a sine 
profile for the initial condition [21].

Since the described problem concerns differential equa-
tions, which present particular problems regarding fuzzy 
logic, it should be mentioned that a number of studies have 
been already carried out in that field, especially regarding 
the fuzzy differentiation of functions. Initially, fuzzy differ-
entiable functions were studied by [22], who generalized 
and extended Hukuhara’s study [23] (H-derivative) of a set 
of values appearing in fuzzy sets. A theory on fuzzy differ-
ential equations is developed by [24,25]. Many studies have 
been carried out during the last years in the theoretical and 
applied research field on fuzzy differential equations with 
an H-derivative [26–28]. Nevertheless, in many cases, this 
method has presented certain drawbacks, since it has led 
to solutions with increasing support, along with increasing 
time [29,30]. This proves that, in some cases, this solution 
is not a good generalization of the classic case. To over-
come this drawback, the generalized derivative generalized 
Hukuhara (gH) was introduced [31–34]. The generalized 
derivative gH will be used from now on for a more extensive 
degree of fuzzy functions than the Hukuhara derivative.

This publication concerns mathematical models for the 
solution of the fuzzy one-dimensional convective–dispersive 
solute transport equation. For the derivation of the advec-
tion–dispersion equation, it is assumed that the flow in the 
medium is unidirectional and the average velocity is taken to 
be constant throughout the length of the flow field. Besides, 
it is assumed that the porous medium is homogeneous 
and isotropic and that no mass transfer occurs between 
the solid and liquid phases. Unfortunately, the boundary 

conditions of the problem are not always intuitively evi-
dent. The uncertainty over them creates ambiguities to 
the solution of the problem. The hydraulic parameters of 
this problem are considered crisp as well as the geometric 
parameters. The fuzzy problem can be translated into a sys-
tem of crisp boundary value problems, hereafter called the 
corresponding system for the fuzzy problem. Subsequently, 
the crisp problem is solved, the results are given in dia-
grams, and numerical examples are presented. The article 
has the following structure: firstly, the problem is presented, 
followed by the development of the mathematical model 
formulating certain characteristics regarding generalized 
fuzzy derivatives. Subsequently, the model is analyzed in its 
fuzzy form and its applications follow. Finally, the conclu-
sions are drawn. The significance and the main advantage 
of this research is the introduction of fuzzy logic in order to 
solve problems with partial differential equations containing 
uncertainties. In most of the current applications of fuzzy 
logic in industrial systems and consumer products, a small 
subset of fuzzy logic is used centering on the methodology 
of fuzzy rules and their induction from observations. This 
new conception concerning partial differential equations 
will help the researchers and the engineers to take the right 
decision in similar fuzzy problems.

2. Mathematical model

2.1. Crisp case

The partial differential equation describing one-dimen-
sional solute transport through a homogeneous medium is 
as follows:

R C
t

D C
x

u C
x

∂
∂

=
∂
∂

−
∂
∂

2

2 ,  (1)

where C is the solute concentration (ML–3), D is the disper-
sion coefficient (L2 T–1), u is the pore water velocity (LT–1), 
x is the distance, and t is the time. The retardation factor 
is equal to R = 1 + ρKd, where ρ is the porous media den-
sity (ML–3) and Kd is the distribution coefficient (M–1 L3). The 
retardation factor indicates that the model is a linear and 
reversible equilibrium adsorption. It is assumed here that 
Kd is negligible and R = 1. The initial and boundary condi-
tions are as following:

2.1.1. Initial conditions
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2.1.2. Boundary conditions
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The solution of the above equation for these initial and 
boundary conditions is given by [1,2] as follows:
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2.2. Fuzzy case

2.2.1. Definitions

2.2.1.1. Definition

A fuzzy set C X: [ , ]→ 0 1 on a universe set X is a mapping 
C X: [ , ]→ 0 1 , assigning to each element x ∈ X a degree of 
membership 0 1<− <−C x( ) . The membership function C x( ) is 
also defined as mC~(x) with the properties: (i) mC~(x) is upper 
semi continuous, (ii) mC~(x) = 0, outside of some interval [c,d], 
(iii) there are real numbers c ≤ a ≤ b ≤ d, such that mC~ is mono-
tonic non-decreasing on [c,a], monotonic non-increasing on 
[b,d] and mC~(x) = 1 for each x ∈ [a,b]. (iv) C X: [ , ]→ 0 1 is a convex fuzzy 
set: µ λ λ µ λ µ λ

  C C Cx x x x+ −( ) ≥ ( ) −( )( ){ }( 1 1) min , .

2.2.1.2. Definition

Let X be a Banach space and C X: [ , ]→ 0 1 be a fuzzy set on X. 
We define the α-cuts of   C X: [ , ]→ 0 1 as







C x
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α α α

α

0 1

0cl supp

where cl supp C x( )( )( ) denotes the closure of the support of 
C x( ).

2.2.1.3. Definition

Let [ ] fC ∈ r , where rf is the space of all compact and 
convex fuzzy sets on X. The α-cuts of  C X: [ , ]→ 0 1, are: ,C C C

α − +
α α

   =   
 . 

According to representation theorem of [35] and the theorem 
of  [36],  the  membership  function  and  the  α-cut  form  of  a 
fuzzy number C X: [ , ]→ 0 1, are equivalent and in particular the α-cuts 

,C C C− +
α αα

   =   
  uniquely represent C X: [ , ]→ 0 1, provided that the two 

functions are monotonic (Cα
– monotonic non-decreasing, 

Cα
+ monotonic non-increasing) and C–

α = 1 ≤ C+
α = 1.

2.2.1.4. Definition

gH-differentiability [37]: let : [ , ] fC a b → r  be such that 
( ) ( ), ( )C x C x C x− +

α αα
   =   
 . Suppose that the functions 

Cα
–(x) and Cα

+(x) are real-valued functions, differentiable 
w.r.t. x, uniformly  w.r.t.  α ∈ [0,1]. Then the function C X: [ , ]→ 0 1 is 
gH-differentiable at a fixed x ∈ [a,b] if and only if one of the 
following two cases holds:

•  (Cα
–)′(x) is increasing, (Cα

+)′(x) is decreasing as functions 
of α, and (C–

α = 1)′(x) ≤ (C+
α = 1)′(x)], or

•  (Cα
+)′(x) is increasing, (Cα

–)′(x) is decreasing as functions 
of α, and (C+

α = 1)′(x) ≤ (C–
α = 1)′(x)].

Notation 1: ( ) ( )( ) ( )
( ) , ( )

dC x dC x
C x C x

dx dx

− +
− +α α
α α
′ ′= = . In both 

of the above cases, ( )C xα
′  derivative is a fuzzy number.

Notation 2: the first case concerns the Hukuhara 
differentiability.

2.2.1.5. Definition

gH-differentiable at x0: let : [ , ] fC a b → r  and x0 ∈ [a,b] with 
Cα

–(x) and Cα
+(x) both differentiable at x0. We say that [37]:

•  C X: [ , ]→ 0 1 is (i)-gH-differentiable at x0 if

(i)  ′ ( )  = ′ ′  ∀ ∈  
− +C x C x C xgH 0 0 0 0 1

α α α α( ) ( ), ( ) ( ) , ,  (5)

•  C X: [ , ]→ 0 1 is (ii)-gH-differentiable at x0 if

(ii)  ′  = ′ ′  ∀ ∈  
+ −C x C x C xgH( ) ( ) ( ), ( ) ( ) , ,0 0 0 0 1

α α α α  (6)

2.2.1.6. Definition

g-differentiability: let : [ , ] fC a b → r  be such that 
( ) ( ), ( )C x C x C x− +

α αα
   =   
 . If Cα

–(x) and Cα
+(x) are differen-

tiable real-valued functions with respect to x, uniformly 
for α ∈ [0,1], then ( )C x  is g-differentiable and we have [37]:
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2.2.1.7. Definition

The gH-differentiability implies g-differentiability, but 
the inverse is not true.

2.2.1.8. Definition

[gH-p] differentiability: a fuzzy-valued function C X: [ , ]→ 0 1 of two 
variables is a rule that assigns to each ordered pair of real 
numbers (x,t) in a set D, a unique fuzzy number denoted 
by ( , )C x t . Let ( , )C x t : D ∈ rf , (x0,t0) ∈ D and Cα

–(x,t), Cα
+(x,t) 

being real valued functions and partial differentiable 
w.r.t. x. We say that [34,38,39]:

C X: [ , ]→ 0 1 is [(i)-p]-differentiable w.r.t. x at (x0,t0) if:
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C X: [ , ]→ 0 1 is [(ii)-p]-differentiable w.r.t. x at (x0,t0) if:
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Notation: the same is valid for ( )0 0,C x t
t

α∂

∂



.

2.2.1.9. Definition

Let ( , )C x t : D ∈ rf , and ( )0 0
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2.2.2. Fuzzy model

Eq. (1) in its fuzzy form becomes:

∂
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=
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−
∂
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2  (12)

with the new initial and boundary conditions:
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Fig. 1 illustrates the boundary condition [C(0,t)]α. 
Solutions to the fuzzy problem Eq. (12) and the initial and 
boundary conditions Eq. (13) can be obtained, utilizing the 
theory of [34,37,38,40,41], by translating the above fuzzy 
problem to a system of second-order of crisp boundary value 
problems, called the corresponding system for the fuzzy 
problem. Therefore, eight crisp boundary value problems 
systems are possible for the fuzzy problem {(1,1), (1,2), (1,3), 
(1,4), (2,1), (2,2), (2,3), (2,4)}.
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Subsequently, the solution of the (1,1) system, is described 
in detail.
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2.2.2.1. Solution of the system (1,1)

First case:
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Initial conditions:

C x x− ( ) = ≥, .0 0 0  (17)

By setting F = C– in Eq. (15) we obtain the following 
Laplace transformation:
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with boundary conditions:
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The solution of Eq. (18) becomes [12,13]:
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The first derivative w.r.t. x is:
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The variable B(s) should be equal to 0, in order to satisfy 

the boundary condition Eq. (19): ∂ ∞
∂

=
F s
x

( , ) .0
So Eq. (20) becomes:
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For the first condition for x = 0:
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Applying now the inverse Laplace transformation [12,13] 
to Eq. (24) the following equation is obtained:
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Second case:
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Initial condition: C x x+ = ≥( , ) .0 0 0
In Eq. (26) G = C+ is set and the following Laplace 

transformation is taken:
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with boundary conditions:
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Applying the same process as in the first case:
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Finally, the fuzzy solution is:
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In Eq. (31) the fuzzy number A  is as follows:

A r r  = − −( ) + −( ) α
α α1 1 1 1,  (32)
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Fig. 1. Membership function of (0, ).C t
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2.2.2.2. Fuzzy derivatives

2.2.2.2.1. First Derivative of C~ vs. x

In order to find the first derivative of C X: [ , ]→ 0 1 w.r.t. x, [42] is 
applied:
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The derivative becomes:
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Now: 1( , ),Cu Af x t
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The above relationship 1( , ),Cu Af x t
x

∂
− =

∂



  is obtained 

according to theorem 1 of [43], in which it is mentioned: 
For  any:  λ,  μ  ∈ R and any fuzzy number ũ we have: 

( ) ( )u uλ ⋅ m ⋅ = λ ⋅m ⋅  .

2.2.2.2.2. First derivative of C vs. t

∂
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2.2.2.2.3. Second derivative of C vs. x
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where:
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2.2.2.3. Existence statement of Eq. (12)

2.2.2.3.1. Boundary conditions

The solution of Eq. (12) for system (1,1) is Eq. (31):
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This equation for x = 0 and t = constant becomes:
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So Eq. (31) satisfies boundary condition for x = 0. The first 
derivative of Eq. (24) w.r.t. x is Eq. (34):
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The second member is written as:
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The L’Hôpital rule is applied:
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Finally: 0.x
C
x ←∞

∂
=

∂



. So Eq. (24) satisfies the boundary 
condition for x → ∞.

2.2.2.3.2. Initial condition

Eq. (31) for t = 0 and x = constant becomes:
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So Eq. (31) satisfies the initial condition.
Remark 1: Eq. (31) for x → ∞ becomes:
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Remark 2: Eq. (31) for t → ∞ becomes:
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2.2.2.4. Satisfaction of Eq. (12)

The following equation should be valid:

2

2

C C CD u
t xx

∂ ∂ ∂
= −

∂ ∂∂

  

, or (42)

( ) ( ) ( )2 1 3, , ,Af x t Af x t ADf x t= +    (43)

In the above equation we apply to the right part of 
the equation the theorem 1 of [43]: For any a,b ∈ R with 
a,b  ≥  0,  or  a,b  ≤  0  and  any  fuzzy  number ũ ∈ rf we have: 
(a + b)·ũ = a·ũ + b·ũ. Now the above equation becomes:

( ) ( ) ( ){ }2 1 3, , , ,Af x t A f x t Df x t= +   (44)

providing that the functions f2(x,t), f3(x,t) are either both 
positive or both negative. In the following figures the 
functions f1(x,t), f2(x,t), f3(x,t) are illustrated as functions of x,t.
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As it can be seen from the above figures the func-
tions f1(x,t), f2(x,t), are positive defined in r. In order to 
simplify and clarify f3(x,t) we pose now non dimensional 
coordinates ξ = ut/x and η = D/ux and we obtain:

0
3 32( , ) ( , )

2
C

f g
x

ξ η = η ξ
η

where:

2 1

3
1 2 1 1 1( , ) exp erfc .

2 2
g eη

     − ξ − ξ + ξ  η ξ = − +        ηξ ηξ ηξ ηξ       

Figs. 2 and 3 illustrate the above functions f1(x,t)/uC0/2 
and f2(x,t)/C0/2 vs. x and Fig. 4  illustrates the above function 
f3(ξ,η) vs. ξ. It  is to be noted that for  large values of η and 
ξ ∈ [0,0.5] the above function takes positives values. For small 
values of η and for ξ ∈ [0,1] the function f3(z,t) = f3(ξ,η) takes 
also positives values. As ξ is equal to ut/x it means that there 
is an upper bound for the ratio t/x ≤ 0.5/u in the first case for 
large values of η and t/x ≤ 1/u in the second case for small val-
ues of η. Beyond these limits the function f3(z,t) takes nega-
tive values. The above limits define a linear relation between 
the coordinates t and x according to [44–47], and the func-
tion f3(z,t) is proved to be positive, subject to certain limits.

As can be seen from the above figures the functions 
f1(x,t), f2(x,t), is positively defined in r, while the function 
f3(x,t) is positively defined only inside certain limits of x, t. 

That means that the derivatives ,C C
x t

∂ ∂
∂ ∂

 

 are valid fuzzy num-

bers in rf and according to definition 2.2.1.8 we have:
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( ) ( ) ( ), , ,
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t t t

− +
α α α
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and ( , )C x t  is (i–p) differentiable. The second derivative 
2

2

C
x

∂
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is a valid fuzzy number and the function 3

0

( , )
/ 2

f x t
C

 is positively 

defined only inside certain limits of f3(x,t) and according to 
definition 2.2.1.9 we have:

2 2 2

2 2 2

( , ) ( , ) ( , )
,

C x t C x t C x t
x x x

− +
α α α

 ∂ ∂ ∂
=  

∂ ∂ ∂  



since ( , )C x t  is (i–p) differentiable. That means that the fuzzy 
solution of the above problem is valid only inside certain 
limits.

3. Application

Two cases were examined, and the values assigned to 
different parameters are given in the following Table 1:

In the first case, concentration values are evaluated at 
t = 0.055, 0.274, 0.55, and 1 y or t = 20, 100, 200, and 365 d. 
Fig. 5 illustrates the time dependent solute profiles at the 
above times. Fig. 6 illustrates membership functions of 
concentration for times t = 100, 200, and 365 d at position 
x = 1 km. Finally, Fig. 7 illustrates the concentration vs. 
time at positions x = 0.5 and 1.5 km. The fronts of the con-
centration attained in Fig. 5 are the positions x20d = 0.6 km, 
x100d = 1.5 km, x200d = 3 km, and x365d = 4 km. As it can be 
observed at Fig. 6 the reduced concentration C/C0 at time 
t = 365 d and in position x = 1 km attains the values 0.69, 0.82, 
0.94 (at  level α = 0). Consequently, the initially uncertainty 
of 15% about the true value remains the same. In Fig. 7 the 
reduced concentration profiles vs. t, attain the value 1 ± r, 
where r = 0.15 is the spread.

In the second case, concentration values are evaluated at 
t = 0.1, 0.4, 0.7, and 1 y. Fig. 8 illustrates the solute profiles 
at the above times. Fig. 9 illustrates membership functions 
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Table 1
Values of parameters D and u

a/a D (km2 y–1) u (km y–1)

1 0.50 1.50
2 0.21 0.11
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Fig. 5. Profiles of concentration for times t = 20, 100, 200, and 
365 d.
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of concentration for times ty = 0.1, 0.4, 0.7, and 1 at posi-
tion x = 0.3 km. Finally, Fig. 10 illustrates the concentra-
tion vs. time at positions x = 0.2 km and 0.6 km. The fronts 
of the concentration attained in Fig. 9 are at the positions 
x0.1y = 0.15 km, x0.4y = 0.5 km, x0.7y = 0.58 km, x1y = 0.69 km. 
As it can be observed at Fig. 9, the reduced concentration 
C/C0 at time t = 1 y and in position x = 0.3 km attains the 
values of 0.59, 0.69 and 0.80 (at level α = 0). Consequently, 
the initially uncertainty of 15% about the true value remains 
the same. In Fig. 10 the reduced concentration profiles 
vs. t, attain the value 1 ± r, where r = 0.15 is the spread.

4. Conclusion

The [37] theory of the gH derivative, as well as its 
extension by [33] to partial differential equations, allows 
researchers to solve practical problems, which are useful in 
engineering. It is now possible for engineers consider the 
fuzziness of various parameters during calculations.

The advection–dispersion equation in case of the cor-
responding system (1,1) has a fuzzy solution with certain 
restrictions: The first derivative with respect to x, as well as 
the first derivative with respect to t are (i–p) differentiables 
and fuzzy numbers in rf , but the second derivative with 
respect to x is (i–p) differentiable fuzzy number inside certain 
limits. So, it can be concluded that the advection–dispersion 
equation has a fuzzy solution inside certain limits.

The profiles of reduced concentration vs. x tend asymp-
totically to zero, while the profiles of reduced concentration 
vs. t tend asymptotically to 1 ± r, where r = the spread of 
approximately 15%.

It is to be noted that the initial spread of r of 15% 
continues unchanged through the whole domain of 
the solution. Consequently, it is important for practi-
cal cases (solute transport in soil physics, particularly 
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for predicting pesticides diffusion, nitrates, heavy met-
als, and other solutes transport), that engineers take the 
right decision, distinguishing the deviations of the crisp 
value of concentration from the fuzzy ones, which here is 
accepted initially 15% and remains the same in the solution  
domain.
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