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a b s t r a c t
Hollow fiber microfiltration membranes have been broadly adopted for drinking water production, 
wastewater treatment, and pretreatment of reverse osmosis (RO). Nevertheless, membrane fouling 
is a critical issue for the operation and maintenance of hollow fiber microfiltration processes and 
its prediction is still challenging. In this study, fouling of hollow fiber microfiltration membrane 
was investigated by applying artificial neural network (ANN) technique. A single fiber filtration 
unit was used to evaluate the rate of fouling resistance change with time (dRf/dt) in constant flux 
operation. Results showed that the ANN models failed to fit the dRf/dt values from the experi-
mental data obtained in 1 min interval. Since this is attributed to large variations of the collected 
data, several techniques for data preprocessing were applied to improve the data quality. First, the 
removal of the outliers from the collected data was attempted but failed to increase the accuracy 
of the model fit. Further trimming of the data values that fall below the 25th percentile and above 
the 75th percentile could improve the model fit. However, excessive filtering of the data resulted 
in a poor model fit due to the oversimplification of the data. On the other hand, an increase in the 
data collection interval was found to be effective to improve the model fit accuracy. These results 
strongly suggest that proper preprocessing of the data is essential for the analysis and prediction 
of membrane fouling by ANN models.

Keywords:  Hollow fiber; Microfiltration; Membrane fouling; Artificial neural network; Model fit; 
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1. Introduction

Microfiltration (MF) using hollow fiber membranes has 
been widely accepted as an efficient method to produce 
high-quality drinking water treatment [1–4]. This offers an 
attractive means to remove particulate contaminants such 
as clay, algae, bacteria, and pathogenic protozoa from drink-
ing water [5–7]. Another major advantage of hollow fiber 
membranes over other configurations of membranes is the 
high membrane surface area to footprint ratio achieved 
by the low aspect ratio (diameter-to-length ratio) of fibers 
[8,9]. Since the late 1990s, a lot of full-scale membrane 

plants have been operated to the increasingly stringent 
regulatory requirements [6,7,10].

However, membrane fouling is still a critical problem for 
the hollow fiber microfiltration process [11]. The contami-
nants deposit or attach on the membranes on which they are 
retained during drinking water treatment [12]. As a result, 
the productivity of drinking water is significantly reduced 
with time and the lifespan of the membrane is shortened 
[9]. Fouling behavior is influenced by membrane sur-
face properties, the nature of the particulate or dissolved 
foulant, water solution properties, etc. [7]. Inadequate man-
agement of the hydrodynamics is also a major factor that 
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aggravates membrane fouling owing to the non-uniform 
profile of local fluxes along the hollow fiber membrane [13].

In the constant flux operation, where the applied 
pressure is adjusted to maintain the same flux with time, 
membrane fouling causes an increase in transmembrane 
pressure (TMP), as illustrated in Fig. 1. Accordingly, the 
value of d(TMP)/dt is a measure to quantify the propensity 
of fouling. According to the resistance-in-series model, the 
TMP(ΔP) is given as a function of fouling resistance (Rf) [4]:

TMP( ) ( ) ( )t P t J R R tm f= = +( )∆ η  (1)

where t is the time (s), J is the permeate flux (L/m2 h or 
m/s), h is the viscosity (Pa-s), and Rm is the intrinsic mem-
brane resistance (m–1). Accordingly, the fouling propensity 
is expressed as dRf/dt.

d
dt

d P t
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Understanding the fouling behavior of hollow fibers is 
important in order to improve the operation and design of 
the hollow fiber system [11,14,15]. This has led to a substan-
tial number of studies on fouling mechanisms and its con-
trol [6,16–23]. Nevertheless, it is still challenging to predict 
MF fouling in most cases due to its complex characteristics 
[24–26]. Mathematical models have been proposed for its 
theoretical interpretation and prediction [4,7,20,27–29]. 
Recently, a handful of studies on the application of statisti-
cal models including artificial neural network (ANN) [25,30] 
and support vector machine [24,31] have also been carried 
out. But the potential of these techniques has not been ade-
quately demonstrated [14,15].

In this study, fouling behaviors of hollow fiber micro-
filtration membrane were assessed using ANN technique. 
A special focus was on the effect of data quality on the 
accuracy of ANN models. Several methods to process the 
data obtained from laboratory-scale experiments were 
attempted and compared. The novelty of this work lies 
on the understanding of the capability and limitation of 
ANN models in connection with the issues on the quality 

of the collected data. This will provide sights on the fouling 
analysis and prediction in hollow fiber MF processes.

2. Material and methods

2.1. Experimental setup

A schematic diagram of a laboratory-scale, submerged 
hollow fiber membrane system for accelerated fouling test 
is shown in Fig. 2. The system consisted of multiple filtra-
tion tanks, allowing the simultaneous testing of MF fibers 
at the same time. Each tank had a working volume of 1 L 
and MF fiber was immersed vertically in the reactor. A mag-
netic stirrer was positioned just below the membrane and 
the stirring speed was controlled by a magnetic stirrer plate.

Table 1 summarizes the properties of the membrane 
used in this study. The MF fibers were made of polyvinylidene 
fluoride (PVDF) with the nominal pore size of 0.1 μm. 
They had an internal diameter of 0.7 mm and an external 
diameter of 1.2 mm. The length of the fiber was 200 mm. 
Since the fiber was relatively short, the pressure drop along 
the fiber was neglected.

Permeate from the membrane module was pulled by 
a peristaltic pump (EW-07551-00, Cole-Parmer, USA). 
A permeate volume was frequently measured by collect-
ing permeate volume using amass cylinder. The TMP 
was continuously measured using a pressure transducer 
(ISE40A-01-R, SMC, Japan) and a data logger (USB-6008, 
NI, U.S.A.), which were connected to a computer. The tem-
perature of solution was kept constant at 20°C. Total recy-
cle mode, where both the retentate from the MF loop and 
permeate were recycled into the tank, was adopted to keep 
the reactor volume constant during the operation time. 
The conditions for the MF experiments are listed in Table 2.

2.2. Model foulants and test conditions

Model foulant used in this study was alginate (Sigma-
Aldrich, Korea, alginic acid sodium salt from brown algae), 
which intends to simulate MF fouling by algae in raw water. 
The concentrations of the foulants were 2, 5, 10, 20 mg/L, 
respectively. The flux was adjusted between 50 and 200 L/
m2 h. Prior to each filtration test, all membranes were 
stabilized using deionized water during 500 min.

2.3. Development of ANN model

In this study, an ANN model with a multi-layer percep-
tron network that had a back-propagation training algo-
rithm was used to fit the rate of fouling resistance change 
with time (dRf/dt). ANN are computational models able to 
simulate the processing and learning functions of a human 
brain [30,32]. In accordance with the human brain, an ANN 
model is composed of simple elements operating in parallel 
[14]. Neurons in a certain layer of the ANN are connected 
to those from the previous layer by a number of weighted 
connections. In addition, there is an extra weight, named 
bias, which is summed to the rest of the input weights 
[30]. The neuralnet package in the R software was used to 
develop ANN models using the experimental data. RPro+ 
algorithm was used with the maximum step of 1,000,000. 

Fig. 1. Basic concept for the prediction of transmembrane pres-
sure (TMP) using the rate of fouling resistance (dRf/dt).
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The training of ANN model was carried out by adjusting 
the connection value among elements in order to minimize 
its performance factor defined as the mean squared error.

Foulant concentration, flux, time, TMP were selected 
as independent variables to predict dRf/dt. It should be 
noted that dRf/dt and TMP are independent. Since the 
purpose of this ANN model is to analyze the dynamic 
behavior of MF fouling, which is expressed as dRf/dt. On 
the other hand, TMP simply represents a status of MF 
membrane at a given time. Nevertheless, TMP should be 

also considered as the independent variable because it may 
affect fouling rate due to foulant compaction. Input data 
were presented to the network through the input layer.

3. Results and discussions

3.1. Experimental data

A series of MF experiments were carried out by vary-
ing the foulant concentration and flux as shown in Table 2. 
The filtration results are illustrated in Fig. 3. The interval 
for the data collection was 1 min. When the foulant con-
centrations were low (Figs. 3a and b), the increase in TMP 
with time was not significant. As the foulant concentration 
increased up to 20 mg/L (Fig. 3c), the TMP rapidly increases. 
In addition to the foulant concentration, the flux also affected 
the rate of TMP increase. As expected, the TMP increased 
faster at higher flux than at lower flux, which is attributed 
to an increase in driving force for foulant deposition.

Using the data in Fig. 3, the dRf/dt values were calcu-
lated and the results are shown in Fig. 4. Unlike the TMP, 
there seems to be no tendency in the dRf/dt. At low foulant 
concentration (Fig. 4a), the variations of the data were high. 
They seem to be reduced with an increase in the foulant 

Fig. 2. Experimental set-up for submerged microfiltration (MF).

Table 1
Properties of MF membrane

Properties

Membrane type Hollow fiber
Membrane material Polyvinylidene difluoride (PVDF)
Pore size (μm) 0.1
Length (mm) 200
Effective area (mm2) 753.98
Outer diameter (mm) 1.2
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concentration. The effect of flux on the dRf/dt was not clearly 
found. The dRf/dt should increase with an increased flux. 
Nevertheless, the flux effect was hidden by large variations 
of the data.

3.2. Development of ANN model

The ANN model was attempted to be derived using 
the data in Fig. 4. However, it failed to fit the experimental 
data as illustrated in Fig. 5. Although the experimental dRf/
dt changes from –164.5 × 107 1/m s to 157.8 × 107 1/m s, the 
model prediction was almost constant, suggesting that the 
training of ANN was not successful. Many attempts were 
carried out by changing the model parameters (i.e., inter-
action/layer, neurons per layer, threshold, maximum steps, 
etc.) for ANN training but all of them were unsuccessful. 
This suggests that the ANN technique was not suitable 
to deal with the data from our MF experiments.

This is attributed to the properties of the input data. 
As mentioned earlier, the input data has large variations. 
The fitting of the normal distribution to the data indicates 
that the mean and standard deviation are 1.107 × 107 1/m s 
and 29.7 × 107 1/m s, respectively (Fig. 6a). Compared with 

Table 2
Experimental conditions

Concentration (mg/L) Flux (L/m2 h) Operation time (min)

2

50

360

100
150
200

5

50
100
150
200
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100
150
200
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150
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Fig. 3. Dependence of TMP on time during MF treatment of alginate solution with different initial concentrations. 
(a) 2 mg/L, (b) 5 mg/L, (c) 10 mg/L, and (d) 20 mg/L.
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Fig. 4. Variations of dRf/dt with time during MF treatment of alginate solution with different initial concentrations. 
(a) 2 mg/L, (b) 5 mg/L, (c) 10 mg/L, and (d) 20 mg/L.
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Fig. 5. Comparison of ANN model prediction with experimental data for dRf/dt without data preprocessing.
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the mean, the standard deviation is too large, resulting in 
a problem in the ANN model fit. The input data was also 
presented using a box plot. It seems that there are a few 
outliers that have large deviations from the center of the 
data. Since they are clearly noises, it was recommended 
that they should be properly eliminated prior to the ANN  
model fit.

3.3. Effect of data reprocessing: “Trimming”

To reduce the variations of the data, the data falling out-
side the proper range was eliminated to prepare the input 
data for the ANN model fit. First, the outliers were taken 
out from the raw data. Before the data processing, the num-
ber of raw data was 5,776. After the removal of the outliers 

by selecting the data between 25% and 75% percentiles 
from the original ones, the number of data was reduced 
to 2,746. Nevertheless, the ANN model fit failed again 
as illustrated in Fig. 7a. The box plot in Fig. 7b presents 
that the variations were reduced by the data trimming. In 
fact, the standard deviation of the data was reduced from 
29.7 × 107 1/m s to 8.453 × 107 1/m s. But it does not seem to 
be sufficient to have a reasonable fit by the ANN model.

Accordingly, a more aggressive data trimming was 
tried to further decrease the variations of the data. By 
selecting the data between 35% and 65% percentiles, the 
number of data points was reduced to 291. In this case, 
the ANN model showed a better fit to the processed data 
(Fig. 8a). The range of the data was narrowed as shown 
in Fig. 8b and the standard deviation of the data was 
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1.198 × 107 1/m s. As a result of this model fit, an ANN 
model was obtained, which structure is illustrated in Fig. 8c.

From the data in Fig. 8b, the data between 25% and 
75% percentiles were selected to further reduce the 
standard deviation and used for the ANN model fit. In 
this case, however, the ANN model fit failed instead as 
shown in Fig. 9a. It is interesting to note that the accu-
racy of the ANN model fit was not improved even 
with a decreased standard deviation. The distribu-
tion of the data in Fig. 9b became narrower than that in  

Fig. 8b. The number of the data and the standard devi-
ation were 216 and 0.632 × 107 1/m s, respectively. 
However, the characteristics of the data also seem to 
be altered by this data preprocessing. The mean of the 
original data was 1.107 × 107 1/m s but the mean of the 
processed data became 0.517 × 107 1/m s. This indicates 
that the center of the data was significantly changed. 
Fig. 9c shows the structure of the ANN model, which is 
not meaningful due to low accuracy and deterioration of 
input data by the processing.
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3.4. Effect of data reprocessing: adjustment of data collection 
interval

Another approach for the reduction of the variations 
in the data was attempted by adjusting the interval for the 
data collection. The raw data was collected with 1 min inter-
val. It was adjusted to 20 min and the ANN model fit was 
carried out. As shown in Fig. 10a, the model matched the 
experimental data well, suggesting that the adjustment of 
the data collection interval is more effective than the trim-
ming of extreme data. A narrow distribution of the data was 
obtained as shown in Fig. 10b. The mean was 1.042 × 107 1/m s 

and the standard deviation was 1.693 × 107 1/m s. 
The structure of the ANN model is presented in Fig. 10c.

As a next step, the interval for data collection was 
set to 60 min. A more reasonable model fit to the experi-
mental data was observed in Fig. 11a. Again, the adjust-
ment of the interval helps to improve the accuracy of the 
model fit. The box plot in Fig. 11b demonstrates the dis-
tribution of the data after the processing. In this case, the 
mean was 0.911 × 107 1/m s and the standard deviation was 
1.10 × 107 1/m s. The result of the model fit is also presented 
as a form of the ANN model structure in Fig. 11c.
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Based on these results, it can be concluded that the 
selection of the data collection interval is an import-
ant factor affecting the accuracy of the ANN model fit. 
Although the number of data decreases with an increase 
in the interval, it poses a positive effect on the ANN model 
fit. Of course, a further increase in the interval may result 
in a negative effect on the ANN model due to an insuffi-
cient number of data point. Thus, the optimum interval for 
data collection should exist.

4. Conclusions

This paper investigated the effect of data preprocessing on 
the ANN analysis of the fouling rate in MF membranes. Based 
on the results, the following conclusions were withdrawn:

• The dRf/dt calculated from TMP exhibited large varia-
tion in 1 min interval of the data collection. The resulting 
distribution of the data for dRf/dt was very broad.
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adjustment of the sampling interval to 20 min (original sampling interval: 1 min) (a) comparison of ANN model prediction with 
experimental data for dRf/dt after data preprocessing and (b) box plot for the processed data.
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• An ANN model with the four independent variables 
(foulant concentration, time, flux, and TMP) was trained 
using the dRf/dt data. However, the model failed to fit the 
experimental results due to the large variations in the 
input data. It does not seem to be possible to use this data 
directly for the ANN model fit.

• The trimming of the data that falls outside the desired 
ranges was attempted and the results were analyzed. 
When a proper range was selected, the elimination of the 

outliers led to a better fit to the experimental results by 
the ANN model. Nevertheless, the characteristics of the 
data were affected by this preprocessing, which led to a 
failure of the ANN model fit.

• As an alternative technique, the interval for the data 
collection was adjusted to decrease the standard devi-
ation of the data. Results showed that the ANN model 
matched the experimental data well after this processing. 
It is evident from the results that the adjustment of data 

  

  

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

dR
f/d

t (
Ex

pe
rim

en
ta

l d
at

a)

dRf/dt (Model fit)

-1

0

1

2

3

4

5

6

dR
f/d

t (
Ex

pe
rim

en
ta

l d
at

a)

-395.79171

2.32529
0.26046
-623.86497

-2
6.7

26
04

0.
25

13
9

1.
67

35
3

-1
57

.0
93

94
48

.3
83

45
14

.2
64

38

TMP

-1.49672

0.04188

-1.0563

-11.91276
0.18376-0.1215

0.6
93

33

-2
.6

72
32

-0
.1

48
21

1.
76

12
6

Concentration

0.0613
0.00363
1.07556
-6.42373

-0.0041

2.35119
0.99126-0.01603

0.0
20

65

-0
.0

11
56

Flux

-0.3074
-0.17826
0.74685
1.4119
-0.01671
1.66355

1.56195

0.32783
-0.00808-1.20176

Time

1.
09

77
-1

0.
48

93
11.2

25
03

-0.12059
-40.90627

0.27639

-0.34882

-1.3229

1.4998
7.28877

dRf

41.92742
2.25797

1.0043
-5.13859

-3.67714
0.6586

-0.24098

15.38772

-5.76016

0.833311

0.29027

1

(a)

(b) (c)

Fig. 11. Effect of data preprocessing on the accuracy of model fit and the distribution of the processed data. Data processing method: 
adjustment of the sampling interval to 60 min (original sampling interval: 1 min). (a) comparison of ANN model prediction with 
experimental data for dRf/dt after data preprocessing and (b) box plot for the processed data.
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collection interval is more effective than the trimming of 
extreme data.
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