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a b s t r a c t
For increasing the photocatalytic activity of PbS and Ag2S nanoparticles, their coupled system was 
constructed mechanically and characterized by X-ray diffraction, scanning electron microscopy, 
diffuse reflectance spectroscopy, photoluminescence (PL) and Fourier-transform infrared spectros-
copy techniques. Then, the photocatalytic activity of the single and coupled systems was evaluated 
in the degradation of phenazopyridine in aqueous solution. The results showed a synergistic pho-
tocatalytic effect for the coupled system with respect to the single systems. PL results showed a 
lower PL intensity for the coupled system, confirming lower recombination of the photogenerated 
electron/hole pairs. The coupled system showed also a higher photocatalytic activity of the coupled 
system. The coupled Ag2S/PbS catalyst with a mole ratio of 2:1 showed the best photocatalytic activ-
ity for 75 min. This catalyst showed also the lowest PL intensity with respect to the other coupled 
systems with different mole ratios. Based on the chemical oxygen demand results a rate constant 
of 1.41 × 10–3 was obtained for the mineralization of PhP solution for 50 min irradiation time, while 
the value of 1.80 × 10–3 min–1 was obtained for its degradation extent at the same conditions.

Keywords:  Phenazopyridine; Semiconducting based photocatalysis; Coupled semiconductors; 
Visible light-driven photocatalyst; Hinshelwood kinetic model

1. Introduction

Growing development in different industries such 
as dyes and pharmaceutical facilities etc. have caused an 
increased discharging of different organic pollutants into 
the environment. This has led to the degradation of the 
environment due to the excessive release of such toxic 
chemicals. One of these technologies is the pharmaceutical 
industries. The wide use of drugs polluted the aquatic envi-
ronments by discharging of the hospital and urban efflu-
ents as wastewater and caused a major problem for body 
life [1–4]. Phenazopyridine (PZP), as a local anesthetic, is 
commonly used to relieve symptoms caused by irritation 
of the urinary tract such as pain, burning, and the feeling 

of needing to urinate urgently or frequently. As a dye, it 
acts as a painkiller to soothe the lining of the urinary tract. 
Its applications have limited due to its problems such as 
toxicity (primarily blood disorders) and potential carcino-
genicity. Its important side effects are pale skin, fever, con-
fusion or weakness, jaundice (yellowing of your skin or 
eyes), swelling, weight gain, feeling short of breath; blue or 
purple coloring in our skin, etc [5]. Due to these side effects, 
it was subjected as a typical pharmaceutical pollutant in 
the present work to be degraded by the heterogeneous 
photocatalysis technique.

In semiconductor-based photodegradation technology, 
four reactive species including the photogenerated electrons 
and hole (e/h) pairs, superoxide and hydroxyl radicals are 
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responsible for the degradation of the different pollutants 
molecules present in the investigated aquatic media. The 
final goal of this technology is mineralizing of organic pol-
lutants into carbon dioxide and water molecules etc. The 
mechanism of the process has been discussed in detail in the 
literature [6–18]. The high efficiency of such technology can 
be limited by the fast e/h recombination process. To dimin-
ish this drawback or the fast separation of e/h pairs, different 
strategies of coupling of semiconductors, doping, supporting 
and use of nanoparticles (NPs) have been used [19–28].

In this work, to enhance the photocatalytic activity of 
PbS and Ag2S semiconductors, we used the coupling and 
nano-dimension strategies. When the nano-particles of such 
semiconductors use, the path length for the migration of 
the photo-induced electrons and holes rapidly decreases. 
This causes the rapid migration of e/h pairs to the surface 
of the catalyst and reacts with O2, H2O and organic pol-
lutants present in the contacted solution before they can 
recombine with together.

PbS is an active semiconductor with a narrow band-
gap of about 0.41 eV. In a precise description, it is sensitive 
to radiation at wavelength range approximately from 1 to 
2.5 μm (correspond to a near infra-red portion of the spec-
trum). PbS with a high dielectric constant and high carrier 
mobility has different applications in fiber optics, infrared 
detectors, telecommunications, lasers, optical switches, 
photovoltaic solar cells, biological systems, storage bat-
teries and photography [29–31]. Ag2S, as a member of I-VI 
semiconductor materials, has a bandgap between 1 to 2 eV 
with a monoclinic crystal structure. It has different applica-
tions in photo-conducting cells, infrared detectors, and solar 
selective coating. Thus, Ag2S has used as a promising mate-
rial for the conversion of solar energy into electricity [32].

The ability of a series of Ag2S–Ag2CO3 composites with 
different amounts of Ag2S has evaluated in the photodeg-
radation of methyl orange, phenol, and bisphenol A. An 
excellent photocatalytic performance has obtained over the 
composite with respect to Ag2S and Ag2CO3 due to the for-
mation of Ag2S/Ag2CO3 well-contacted interface and unique 
electron structures [33]. The boosted effect of Ag2S quantum 
dots with the hexagonal SnS2 has also studied in the photo-
degradation of methyl orange and Cr(IV) removal. The pho-
togenerated holes and superoxide radicals showed a major 
role in MO and Cr(IV) removal [34]. In another work, the 
enhanced photocatalytic activity of rGO-modified Ag2S NPs/
g-C3N4 nanosheets has studied towards RhB [35].

The flower-like MoS2/Ag2S/Ag Z-scheme photocata-
lysts have constructed and the increased activity has eval-
uated towards congo red, tetracycline hydrochloride and 
disinfection for Pseudomonas aeruginosa. In this system, 
Ag acted as an electron mediator and enhanced the rate 
of electron transmission and the separation efficiency of 
photogenerated charge carriers [36]. An Ag2S-sensitized 
NiO–ZnO heterostructure has used in the photodegradation 
of RhB with enhanced visible-light activity and electro-
chemical sensing towards acetone. The high sensitivity 
of 4.0764 μA mmol L–1 cm–2 with a low detection limit of 
0.06 mmol L–1 has obtained for the detection of acetone [37]. 
In another work, p-xylene and chlorophenol have been 
degraded by TiO2/Ag2S nanocomposite with a boosted pho-
tocatalytic activity with respect to the single systems [38]. 

The photocatalytic performance of a ternary Ag2S/ZnO/
ZnS nanocomposite with a high visible light response has 
evaluated towards water photolysis and hydrogen produc-
tion [39]. Decorated TiO2 hierarchical spheres with Ag2S 
NPs showed an enhanced photocatalytic performance 
towards the hydrogen production (with a rate constant of 
707.6 μmol h–1 g–1) and degradation of methyl orange (with 
a rate constant of 0.018 min–1) [40]. Other works reported 
the high efficiency of supported Ag2S or PbS onto sup-
ports, or their coupled and doped systems with other 
semiconducting materials in different processes such as 
photodegradation, H2-production, photo-electrochemistry, 
and disinfection, etc [41–50].

In this work, a nanocomposite of PbS–Ag2S was syn-
thesized by hand mixing of the as-synthesized PbS and 
Ag2S NPs and characterized by different techniques. 
The synergistic photocatalytic activity of the composite 
with respect to PbS and Ag2S NPs alone was studied in 
the photodegradation of PZP as a typical pharmaceutical 
pollutant. The photodegradation experiments were focused 
on the kinetic aspects of the process.

2. Experimental setup

2.1. Materials and preparations

Silver nitrate, sodium sulfide, lead nitrate, and other 
analytical grade chemicals were purchased from Sigma-
Aldrich Company and used for preparing aquatic solutions 
in distilled water. Phenazopyridine (C11H11N5·MW: 213.24) 
was used as a pharmaceutical tablet (100 mg, Shahrdaro Co., 
Iran). A PZP tablet with a weight of 175 mg was thoroughly 
hand mixed in an agate mortar. Aliquot 17.5 mg of the pow-
der was dissolved in water and then filtered into a 100 mL 
volumetric flask and reached the mark. The concentration 
of PZP in this solution was 100 mg L–1.

2.2. Synthesis of the nano-materials

A 0.033 g weighted Pb(NO3)2 was added to water and 
stirred for 30 min to complete dissolution and diluted 
to the mark in a 100 mL volumetric flask (solution A). 
A 0.024 g portion of Na2S was also dissolved in 100 mL dis-
tilled water completely (solution B). Solution B was added 
to solution A under vigorous stirring and pH reached to 9 
by adding 0.2 M NaOH solution and stirring process was 
continued for 2 h. After centrifugation (rpm > 13,000) and 
many times washing, the resulted lead sulfide NPs were 
dried in a heating oven at 70°C and a dark gray solid was 
stored for next uses [51].

To synthesis Ag2S NPs, 1.02 g of AgNO3 (in 100 mL 
water), and 0.504 of Na2S·5H2O solution (in 100 mL water) 
was completely dissolved and the sulfide solution was 
added dropwise into the silver solution with sonication 
at room temperature for 30 min (frequency, 1 kHz, ampli-
tude: 100%, 230 V AC). Finally, the suspension was vigor-
ously stirred for about 6 h. After centrifugation and many 
times washing with acetone and distilled water, it was dried 
under vacuum at 80°C and the resulted black Ag2S powder 
NPs were obtained [52].

For the preparation of PbS–Ag2S coupled system, the ade-
quate weighted amount of each ingredient was thoroughly 
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hand mixed in an agate mortar for 10 min. The resulted 
in homogenous powder was used for the next studies.

2.3. Characterization methods

Phase identifications of the as-synthesized catalysts 
were studied by X-ray diffraction (XRD) (X’Pertpro, with 
Ni-filtered and Cu-Kα radiation at 1.5406 Å, V: 40 kV, 
i: 30 mA; Netherland). The surface morphology of the 
as-synthesized composite was studied by a scanning 
electron microscopy (SEM) instrument (model: TESCAN 
CO., Czech Republic). The UV-Vis diffuse reflectance spec-
troscopy (DRS) of the samples was studied by a UV-Vis 
spectrophotometer equipped with an optics integrating 
sphere and a diffuse reflectance accessory (JASCO V670, 
using BasO4 as the reference material). A centrifuge (Sigma, 
2–16P, Germany) instrument was used for the separation of 
nanoparticles from the suspensions. A photoluminescence 
(PL) spectrophotometer (PerkinElmer S45, U.K.) was used 
for recording PL spectra. The surface area was measured by 
the BELsorp-mini II instrument (MicrotracBEL Corp. Co., 
Japan). A pH/p-ion meter (JENWAY model 3505) was used 
for recording solutions’ pH.

2.4. Photodegradation experiments

In a typical PhP photo-degradation process, a suspen-
sion of 0.5 g L–1 of the CdS–Ag2S catalyst in 5 mg L–1 PhP 
solution at pH 5 was irradiated by a 100 W tungsten lamp 
(Osram electric Co., Iran that positioned 15 cm above the 
reaction cell) in a common 25 mL beaker. The magnetic 
stirring (200 rpm) of the suspension was done to achieve 
a homogeneous suspension to have repeatable experi-
ments. At definite times, the withdrawn sample was centri-
fuged and the absorbance of the cleaning solution (A) was 
recorded at λmax 423 nm for PZP. The recorded absorbance 
was compared with that of blank PZP solution (A0) for the 
estimation of C/C0 values because the absorbance corre-
sponds to the concentration of PZP (C0 and C, the initial 
and final concentrations, respectively) based on the Beer–
Lambert law. The recorded absorbance values were also 
used for the calculation of the degradation efficiency (DE) 
of the process by using the Eq. (1) [53].

DE % = − ×
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3. Results and discussion

3.1. Characterization studies

3.1.1. XRD patterns

Fig. 1 shows the XRD patterns obtained for the as- 
synthesized PbS NPs, Ag2S NPs and the resulted Ag2S–
PbS coupled system. All patterns were compared with the 
standard patterns of Ag2S and PbS crystallite phases. This 
comparison confirmed that peak positions of the pattern 
of Ag2S agree with the monoclinic Ag2S crystallite phase 
according to JCPDS No. 14-0072. Also, based on literature 

[54,55], typical XRD peaks of monoclinic Ag2S should be 
appeared at 2θ values of 22.5° (–101), 26° (012), 29° (111), 
31.7° (–112), 33.8° (022), 34.7° (120), 37° (112), 37.9° (–103), 
41° (031), 43.5° (103), 46.5° (123), 49° (–212), 53.4° (–213), 
58.5° (–223), 63.8° (–134), 70° (301) and 78° (–321). Most 
of the mentioned peaks are present in the present XRD 
patterns of Ag2S NPs and the Ag2S–PbS coupled system. 
XRD peaks of FCC cubic phase of PbS should appear at 
2θ values of 25.98° (111), 30.10° (200), 43.10° (220), 51.02° 
(311), 53.47° (222), 62.59° (400), 68.95° (331), 71.01° (420), 
and 79.02° (422) based on JCPDS No. 05-0592 [56]. These 
peaks are also present in the present XRD patterns of 
PbS NPs and the Ag2S–PbS coupled system. According to 
the above-mentioned peaks, all XRD peaks in Fig. 1 was 
assigned to their corresponding hkl planes. It is worth 
mentioning that, some peaks of Ag2S and PbS crystals 
were over lapped in the pattern of the nanocomposite (NC) 
sample.

To estimate the average crystallite size (d) of the 
coupled system the following Scherrer equation was used. 
In this equation, β is the excess of width line of the diffrac-
tion peak (in radian), θ is the Bragg angle (in degree) and λ 
is the wavelength of X-ray photons [57,58].

d = 0 9.  
 cos

λ
β θ

 (2)

All information used for this calculation are summa-
rized in Table SDT1 in supplementary materials. As shown, 
the average crystallite size of 34.3 ± 10.5, 23.1 ± 10.3 and 
33.5 ± 10.5 nm were estimated for the Ag2S NPs, PbS 
NPs, and Ag2S–PbS NC, respectively.

3.1.2. Fourier-transform infrared spectroscopy of the samples

Fig. 2 shows recorded Fourier-transform infrared 
spectroscopy (FTIR) for the as-synthesized single semicon-
ductors and their coupled system in this work. Generally, 
corresponding peaks of the adsorbed water including a 
broad peak at around 3,500 cm–1 (for its stretching mode) 
and other at 1,637 cm–1 (for its bending vibration mode) 
are present in all spectra. This broadband proves the mois-
ture-absorbing capacity of the samples, especially in cases 
of Ag2S and the coupled system. PbS showed absorption 
peaks at 602, 1,082 cm–1 and a weak peak at 1,388 cm–1. 
These peaks are in agreement with the values of 608, 1,061 
and 1,399 cm–1 that reported for PbS NPs in literature [59]. 
In another work [35], the absorption peaks at 616, 1,092, 
and 1,399 cm–1 have reported for heteropolar diatomic 
molecules of PbS.

Based on the literature, the characteristic vibration of 
Ag–S should appear by the appearance of absorption peaks 
in the range of 500–600 cm–1 [60]. Single PbS NPs in this 
work showed absorption peaks at 508 and 618 cm–1 that 
agree with the above-mentioned peaks for Ag–S bond. In 
the spectrum of the composite, some overlapped, broad-
ened and shifted peaks were observed. These can be related 
to novel interactions of Ag–Pb, Ag–S–Pb, –S–S– etc. bonds. 
Similar interactions have reported in the literature [61].
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Fig. 1. Recorded XRD patterns of the (A) PbS NPs, (B) Ag2S NPs, and (C) PbS–Ag2S NC with a mole ratio of 1:2 PbS:Ag2S.



S. Salmanderis, A. Nezamzadeh-Ejhieh / Desalination and Water Treatment 197 (2020) 200–212204

3.1.3. PL spectra

PL spectra of the single PbS and Ag2S semiconductors 
and the related composite (suspension of 1 mg in 100 mL 
acetone) were recorded. When the samples were illuminated 
at an excitation wavelength of 290 nm, they emitted a broad 
peak in the range of 320–565 nm that centered at 410 nm. It 
was reported that when PbS cubic phase was irradiated at 
368 nm, its PL peak was emitted at 418 nm [62]. PL peaks 
have reported for Ag2S that centered at 520–530 nm [63]. In 
general, PL intensity is known as a measure of the rate of 
the e/h recombination. Thus, a higher PL intensity shows a 
faster e/h recombination process. As shown in Fig. 3A, the 
resulted coupled system showed a lower PL intensity than 
the single semiconductors. This confirms a lower e/h recom-
bination for the coupled system that could result in a higher 
photodegradation activity for the coupled system.

Fig. 3B shows that the PL intensity of the resulted cou-
pled systems depends on their Ag2S/PbS mole ratios. This 
confirms that charge carrier separation in the coupled 
system varied with a change in the mentioned mole ratio. 
The lowest PL intensity was observed for the coupled sys-
tem with the mole ratio of Ag2S/PbS equal 2. It would be 
expected the highest photocatalytic activity for this catalyst 
which of results will discuss in the photodegradation section.

3.1.4. SEM results

Some SEM images of the single Ag2S NPs (A,B), PbS 
NPs (C,D) and Ag2S–PbS NC (E,F) are shown in Fig. 4. 
First of all, these images confirm nano-dimension for the 
as-synthesized systems. Images A and B show the for-
mation of semi-spherical Ag2S particles which relatively 
agglomerated in different directions. Images C and D show 
that PbS NPs have also disordered semi-spherical particles 
which their agglomeration created some sheet-like aggre-
gates. In the SEM images of the composite (E and F) the 
mentioned nano-sheets are more obvious that belong to 
PbS species which covered by some semi-spherical Ag2S 

species. A relative regular morphology was observed for 
the catalyst that shows the well-dispersion of Ag2S and PbS 
ingredients thorough the catalyst.

3.1.5. UV-Vis diffuse reflectance spectroscopy

The bandgap energy (Eg) of a typical semiconductor 
relates to its electronic excitation which is a vital parameter 
in the semiconducting based photocatalytic degradation 
process. In general, a narrower Eg could result in the pro-
duction of more photo-generated e/h pairs in the conduc-
tion band (CB) and the valence band (VB) of the illuminated 
semiconductor, respectively. Generally, the coupling of 
two or more semiconductors hybrids the energy levels and 
may cause a narrower Eg for the resulted composite or het-
ero-structure system [64]. In this work, to estimate the Eg 
values of the used single semiconductors and the resulted 
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S. Salmanderis, A. Nezamzadeh-Ejhieh / Desalination and Water Treatment 197 (2020) 200–212206

coupled system, the samples were subjected to UV-Vis DRS. 
Typical absorption spectra are shown in Fig. 5. In these 
spectra, the absorption edge wavelength (λAE) of each sam-
ple was estimated by extrapolation of the absorption curve 
(typically showed for curve b) back to X-axis. The esti-
mated absorption edges, which correspond to the electronic 
excitation of samples, were substituted in the following 
equation and the bandgap energy (Eg) of the samples was 
estimated [65].

Eg  eV
nmAE

( ) ( )=
1 240,

λ
 (3)

To calculate the potential position of the VB and CB of the 
semiconductors, we used the electronegativity values of each 
sample. In the following equation, EVB (VB edge potential) was 
estimated by substituting of Eg, X (the geometric mean of the 
electronegativity of the constituent atoms in the investigated 
semiconductor) and Ee (the energy of free electrons relative to 
the normal hydrogen electrode (about 4.5 eV)) [66–69]:

E X E Ee gVB  = − + 0 5.  (4)

The electronegativity of a semiconductor is equal to the 
half value of the summation of the electron affinity (Ea) and 
the first ionization energy (Ei) of the element [70]. The ECB 
value was estimated by using the ECB = EVB – Eg formula [71]. 
All used [72–76] and the calculated values are summarized 
in Tables 1 and 2. As the results show, the coupling of the 
semiconductors, enhanced the optical properties of Ag2S and 
caused a relative redshift in its bandgap. The obtained values 
for the potential positions of the CB and VB bands were used 
to draw the Schematic energy diagram to illustrate the charge 
carriers’ transfer in the coupled system which of results will 
show in the next sections (photodegradation section).

3.1.6. Texture properties of the samples

The surface texture of the single and the composite sam-
ples were studied by the nitrogen adsorption–desorption 
isotherms as shown in Fig. 6A. The Brunauer–Emmett–Teller 
(BET) surface area of the as-synthesized compounds was 
investigated via these isotherms. The BET theory helps us 
to illustrate the physical adsorption of gaseous molecules 
on a solid surface and it is the base of an important analysis 
technique for measuring the specific surface area (SSA) of a 
solid material. SSA (or cross-sectional area) is an important 
property of a solid which defines as its total surface area per 
its unit mass cross-sectional area. For analyzing the pore 
structure, the N2 adsorption–desorption isotherms must be 
recorded over the widest possible range of relative pressure, 
while allowing for slow equilibration and other operational 
problems, particularly at very low pressures. The smaller 
pores provide the larger surface area for gas adsorption. 
Barrett–Joyner–Halenda (BJH) analysis can also be used for 
measuring the pore area and specific pore volume based 
on the gas adsorption/desorption results. BJH characterizes 
pore size distribution independent of the external surface 
area due to the particle size of the sample.

The results obtained from the isotherms fitted to the 
BET equation and the BET plots constructed (Fig. 6B). SBET 

was determined and summarized in Table 3 together with 
the pore area and specific pore volume obtained from BJH 
plots (Fig. 6C). The results are summarized in Table 3. As 
the results show, the characteristics of the composite sample 
located between those obtained for the single systems.

3.2. Degradation results

3.2.1. Boosted effect of the coupled system

Change in UV-Vis absorption spectra of PhP solution, as 
a measure of its removal extent, during different removal 
processes were recorded and the results are shown in 
Fig. 7A. The results showed that direct photolysis and sur-
face adsorption have not a considerable role in PhP removal 
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Table 1
Mulliken electronegativity of the constituent elements of the 
used semiconductors by using their electron affinity (Ea) and the 
first ionization energy (Ei) in eV [47–51]

Element Ea (eV) Ei (eV) ½ (Ea + Ei) (eV)

Pb 0.356 7.416 3.886
S 2.071 10.36 6.218
Ag 1.305 7.576 4.440

Table 2
Bandgap energies and potential positions of VB and CB of the 
used semiconductors of the composite by using the empirical 
formula of EVB = X – E0 + 0.5 Eg. X data are in Mulliken’s electro-
negativity scale

Catalyst X (eV) Eg (eV) Eg bulk (eV) EVB (eV) ECB (eV)

PbS 4.916 0.50 0.37 0.666 0.166
Ag2S 4.967 0.89 0.92 0.912 0.022
PbS–Ag2S – 0.79 – – –
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during 100 min. At longer times (after 10 min), no enhance-
ment on PhP removal was observed by the surface adsorp-
tion process. Hence, in the photocatalytic experiments, the 
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Fig. 6. (A) Typical N2 adsorption–desorption isotherms, (B) BET, 
and (C) BJH plots for the single and composite systems.
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Fig. 7. (A) Results of removal of PZP by surface adsorption, 
direct photolysis and photocatalytic processes on the removal 
of PZP (catalysts dose: 0.5 g L–1; CPZP: 5 mg L–1; time: 100 min; 
initial pH: 5.5), (B) Z-scheme for the charge carriers’ transfer in 
the composite during the irradiation process, and (C) effects 
of the mole ratio of the PbS/Ag2S in photodegradation of PhP 
at the aforementioned conditions.

Table 3
BET results obtained for the samples

Sample ABET (m2 g–1) Vp (cm3 g–1) dp (nm)

CdS 20.441 0.1434 27.9
Ag2S 2.332 0.0109 20.4
CdS–Ag2S 4.703 0.0425 36.3
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suspensions were shaken at dark for 10 min to achieve the 
equilibrium adsorption/desorption process and then the irra-
diation process was started.

Despite these methods, the photocatalysis process 
showed a significant enhancement in PhP removal at the 
same conditions. The trend of PbS–Ag2S > Ag2S > PbS was 
observed for the enhanced photocatalytic activity of the 
catalysts. The boosted the photocatalytic activity of the 
PbS–Ag2S catalyst is related to the better charge separation 
process that occurred for it. This can be illustrated by the 
schematic diagram shown in Fig. 7B.

Under visible light illumination of the coupled system, 
both PbS and Ag2S can be excited and produce e/h pairs. 
As shown, the produced photoelectrons in Ag2S-CB have 
more negative potential than that of PbS-CB level. Thus, 
these electrons can be migrated into the PbS-CB level. In 
contrast, the VB levels of both semiconductors have suit-
able potential for hole transfer in the opposite trend. These 
charges carriers’ transfer pathways drastically decreased 
the e/h recombination process and hence the photocat-
alytic activity was increased. As shown, the photogene-
rated electrons in CB-levels of both semiconductors have 
suitable potentials to reduce dissolved oxygen into the 
superoxide radicals. The produced hole should oxidize 
water molecules or hydroxide ions into hydroxyl radi-
cals. In consequence, by decreasing e/h recombination, 
the production of superoxide and hydroxyl radicals was 
increased [72–74].

3.2.2. Effect of Ag2S/PbS mole ratio

Based on the above-mentioned discussion, it would be 
expected that change in the mole ratio of PbS/Ag2S must 
affect the DE, because a matched mole ratio needs for a bet-
ter e/h separation in the coupled system. Thus, photodegra-
dation experiments were done by the coupled catalysts with 
different mole ratios. The results in Fig. 7C shows the best 
photocatalytic activity for the composite that its moles of 
Ag2S were twice greater than that of PbS. This confirms that 
in this case, the best charge carriers’ transfer can occur to 
separate e/h pairs. In this case, both production of e/h pairs 
in both semiconductors, especially in Ag2S, and the separa-
tion of e/h pairs processes occur in optimal rates and thus 
the best photodegradation activity could be achieved [75].

3.2.3. Kinetic of the process

Commonly, the following Grotthuss–Draper law can use 
for the evaluation of the degradation rate of a typical pol-
lutant in a case that the initial pollutant and its degradation 
intermediates absorb the arrived photons. This law is based 
on the Beer–Lambert law. In this equation, C0 and C stand for 
the concentrations of pollutants at initial and final time t, k1 
is the rate constant, k2 and k3 are the absorption coefficients 
of the pollutant and the products, respectively [76,77].
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A k3 value of about zero means that the photodegrada-
tion products cannot absorb the arrived photons. A high 
concentration of the reactant, a zero-order kinetic would 
be expected for the process. The value of k3 ~ k2 means that 
the spectrum of degradation intermediates is similar to 
that of the reactant. In this case, a pseudo-first-order reac-
tion rate (not a first-order one) would be considered for the 
kinetic of the process and hence Eq. (5) can be simplified to 
Eq. (6). In Eq. (6), k is the pseudo-first-order reaction rate 
constant [76–78].
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Getting the integral for Eq. (6) gives Eq. (7) that is 
similar to the pseudo-first-order reaction reported by 
Hinshel wood [79,80].
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In this work, photodegradation of PhP was followed 
at different irradiation times which of results are shown in 
Fig. 8. As shown in Fig. 8A, the absorbance of PhP solution 
was decreased at a maximum wavelength of 422 nm during 
the time. At initial times absorbance of the solution in the 
UV region was increased and decreased at longer times. 
This confirms the production of the smaller degradation 
intermediates that mineralized at longer times. Fig. 8B 
shows the plot of ln(C/C0) vs. irradiation time to evaluate 
the kinetics of the process. Reasonable R2-value confirms 
that the kinetics of the process obeys from the Hinshelwood 
pseudo-first-order rate reaction. The rate constant about 
2.82 × 10–3 min–1 was obtained which resulted in a t1/2 value of 
246 min by using the t1/2 = 0.693/k equation.

3.2.4. Chemical oxygen demand results

Commonly, the measure of pollution of an aquatic sam-
ple can be evaluated by the chemical oxygen demand (COD). 
This parameter shows the needed oxygen consumed for the 
oxidation of the organic pollutants present in media and a 
lower COD value shows lower polluted water [81].

To evaluate the mineralization extent of PZP solution 
during the photodegradation process, photodegradation 
experiments were done at the conditions mentioned in the 
caption of Fig. 9. The change in the COD value of the solu-
tion is shown in Fig. 9A. The degradation extent of PZP 
was calculated by recording the absorption spectra of the 
resulted solutions. Based on the results, the plot of ln(C/C0) 
vs. time (Fig. 9B) was drawn (y = –1.83 × 10–3–1.80 × 10–3 x), 
which shows a rate constant value about 1.80 × 10–3 min–1 
for the degradation of PZP. This value corresponds to 
t1/2 = 385 min for the photodegradation of PZP during 50 min 
irradiation time.

Based on the COD results of the solutions, the kinetic of 
the process was followed (Fig. 9C). The resulted plot had a 
line equation of y = –1.65 × 10–3–1.41 × 10–3 x. The k-value of 
1.41 × 10–3 for the mineralization of the PZP solution shows 
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a t1/2 value of 495 min for its mineralization during the pro-
cess. The results show the degradation of PhP molecules is 
1.28 times greater than its mineralization extent for 50 min. 
This shows that there are some degradation intermediates 
that resist further mineralization during this time and need 
a longer time for mineralization.

4. Conclusion

Coupling of PbS and Ag2S semiconductors resulted to 
an enhanced photocatalytic activity towards PZP in aque-
ous solution. The coupled system showed the lowest PL 
intensity with respect to the single systems, confirming a 
lower e/h recombination. This caused the aforementioned 
boosted photocatalytic activity for this system. Both pho-
tocatalytic activity and PL intensity depended on the mole 
ratio of Ag2S:CdS and thus the best results were obtained for 
the coupled system that its moles of Ag2S were twice greater 
than that of PbS. The mineralization extent of the PZP mol-
ecules was followed by the COD technique. Based on the 
COD results a rate constant of 1.41 × 10–3 was obtained for 

the mineralization of PZP solution during 50 min irradiation 
time, while the value of 1.80 × 10–3 min–1 was obtained for its 
degradation extent at the same time. This shows that the deg-
radation of PZP molecules is 1.3 times greater than its min-
eralization extent during this time. On the other hand, some 
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degradation intermediates may resist further mineralization 
at this time and need a longer time for more mineralization 
extent.
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Supplementary information
SDT1: results used in Scherrer equations for the estimation of the 
crystallite size single Ag2S and PbS NPs and the Ag2S–PbS NC

For Ag2S NPs

2θ
FWHM 
(2θ) β cosθ β cosθ d (nm) Av. d (nm)

26.6 0.148 0.0026 0.999 0.0026 55.44 34.3 ± 10.5
29 0.246 0.0043 0.999 0.0043 32.23
32 0.197 0.0034 0.999 0.0034 40.76
34.8 0.148 0.0026 0.999 0.0026 53.31
38 0.246 0.0043 0.999 0.0043 32.23
44 0.197 0.0034 0.999 0.0034 40.76
45.7 0.295 0.0052 0.999 0.0052 26.65
46.5 0.246 0.0043 0.999 0.0043 32.23
48 0.246 0.0043 0.999 0.0043 32.23
49 0.197 0.0034 0.999 0.0034 40.76
53.5 0.246 0.0043 0.999 0.0043 32.23
58.5 0.492 0.0086 0.999 0.0086 16.12
61 0.394 0.0069 0.999 0.0069 20.09
64 0.246 0.0043 0.999 0.0043 32.23
72.5 0.295 0.0052 0.999 0.0052 26.65

For PbS NPs

26.08 0.197 0.003 0.999 0.003 40.29 23.1 ± 10.3
30.24 0.148 0.026 0.999 0.003 53.30
43.20 0.393 0.007 0.999 0.007 20.09
51.15 0.541 0.009 0.999 0.009 14.74
53.61 0.590 0.010 0.999 0.010 13.86
62.70 0.590 0.010 0.999 0.010 13.86
69.04 0.492 0.009 0.999 0.009 16.12
71.10 0.689 0.001 0.999 0.001 11.55
79.10 0.344 0.006 0.999 0.006 23. 1

For Ag2S–PbS NC

26 0.246 0.0043 0.999 0.0043 32.31 33.5 ± 10.5
29 0.148 0.0026 0.999 0.0026 53.93
30 0.394 0.0069 0.999 0.0069 20.17
31.7 0.197 0.0034 0.999 0.0034 40.41
34 0.197 0.0034 0.999 0.0034 40.41
34.7 0.148 0.0043 0.999 0.0043 32.31
37 0.098 0.0017 0.999 0.0017 80.58
38 0.197 0.0034 0.999 0.0034 40.41
41 0.197 0.0034 0.999 0.0034 40.41
43.4 0.590 0.0103 0.999 0.0103 13.46
46.4 0.246 0.0043 0.999 0.0043 32.31
51 0.344 0.0060 0.999 0.0060 23.06
53.6 0.246 0.0043 0.999 0.0043 32.31
58.5 0.295 0.0052 0.999 0.0052 26.91
62.8 0.295 0.0052 0.999 0.0052 26.91
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