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a b s t r a c t
This research was an effort to improve the performance of an activated sludge system by using 
biofilm carriers in the aeration basin of the system for treating petroleum refinery wastewater. 
Eventually, a granular activated carbon column was used in the last part of the treatment process. 
A neural network was employed to predict pollutants in the effluent and analyze the operating 
parameters. Overall treatment efficiencies of chemical oxygen demand (COD), turbidity, NH3, and 
total suspended solids (TSS) removal were 93%, 94%, 94%, and 92%, respectively. The results indi-
cated that the removal efficiencies of pollutants in our hybrid system were superior to conventional 
activated sludge systems. The training procedure of the neural network model was promising, and 
virtually an acceptable match was achieved between predicted values and experimental values. For 
all models predicting effluent COD, turbidity, NH3, and TSS, the correlation coefficient was higher 
than 0.9, and the mean squared error approached zero. According to the analysis of input param-
eters, the influent concentration is the essential factor in the modeling of effluent characteristics.

Keywords:  Petroleum refinery wastewater treatment; Activated sludge process; Biofilm carriers; 
Activated carbon; Neural networks; Prediction

1. Introduction

It is essential to collect and treat wastewater and then 
dispose of reclaimed wastewater without changing the eco-
system of the receiving environment to achieve a healthy 
and non-polluting environment [1]. Generally, conventional 
wastewater treatment systems are a combination of chemi-
cal, physical, and biological processes. Microorganisms are 
suspended in the bioreactor or are attached to carriers in 
biological wastewater treatment processes [2]. The hybrid 
treatment processes use both suspended and attached 
growth within the same reactor, and this is an economi-
cally attractive solution. Thus, they have several advantages 
over single processes [3].

The activated sludge process is fundamentally sus-
pended growth biological wastewater treatment process 
in which a bacterial biomass suspension is responsible for 
the removal of pollutants [4]. The activated sludge process 
has been successfully used for treating various wastewa-
ters with satisfactory removal efficiencies [5]. The focus 
of recently conducted studies regarding the application 
of the activated sludge processes in wastewater treatment 
is to decrease the cost of treatment and improve the per-
formance. Tellez et al. [6] used a field continuous-flow 
activated sludge treatment system for removing petro-
leum hydrocarbons from Southwestern the United States 
oilfield generated produced water. Field-scale test results 
have indicated that an activated sludge treatment system 
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can effectively remove total petroleum hydrocarbon from 
oilfield generated produced water to concentrations of 
1.0 mg/L. Also, it has been reported that an activated 
sludge system has high performance in color removal 
from the cotton textile industry wastewater [7]. Aslan et 
al. [8] investigated the chemical oxygen demand (COD) 
removal for the edible oil wastewaters by an activated 
sludge system. The results showed that the system could 
remove approximately 80% of COD in 5 d.

While the performance of suspended growth processes 
in wastewater treatment is excellent, their capability can be 
improved by using packing materials or biofilm carriers in 
aeration basins [9]. Biofilm carriers are suitable for enhancing 
overloaded activated sludge plants and converting unused 
volumes into biofilm reactors [10]. The application of biofilm 
carriers in the aeration basin of activated sludge systems may 
improve the performance of these suspended growth treat-
ment systems. Di Trapani et al. [11] used a hybrid biofilm/
activated sludge pilot to investigate the organic removal effi-
ciency of the pilot in different temperatures and values of 
the mixed liquor sludge retention time. The results indicated 
that the hybrid system could effectively treat municipal 
wastewater in low temperatures and with low mixed liquor 
sludge retention time values. Nutrient removal was investi-
gated using a combined process with activated sludge and 
fixed biofilm by Su and Ouyang [12]. The results showed that 
the combination of packing materials and activated sludge 
systems can be successfully used for upgrading conventional 
activated sludge systems. Park and Lee [13] used an activated 
sludge system with a polyurethane fluidized bed biofilm 
for treating dyeing wastewater. COD removal in the pilot 
was promising in different organic loading rates. In another 
study, Gebara [14] used plastic nets inside the aeration tank 
of a conventional activated sludge process in a laboratory- 
scale model. The nets could improve biochemical oxygen 
demand (BOD5) removal efficiency for synthetic wastewater.

This study aims to assess the removal efficiency of 
organic pollutants in petroleum refinery wastewater through 
the integration of attached and suspended growth by 
employing biofilm carriers in the aeration basin of an acti-
vated sludge system. Although biofilm carriers can improve 
the efficacy of biological wastewater treatment systems, the 
detachment of biomass from suspended biofilm carriers is a 
crucial issue among these systems. Hence, a suitable balance 
between detachment and growth forces is critical for the sta-
bility of biofilm attached growth systems [15]. High filling 
carrier ratios might result in biofilm detachment, which can 
decrease biomass concentration in biological reactors [16]. 
Furthermore, it is not economical to use high biofilm ratios 
as the aeration flux should be increased, which increases 
the cost of the biofilm process [17]. For this purpose, 50% 

of the aeration basin of the activated sludge system was 
filled with biofilm carriers. Additionally, a granular acti-
vated carbon column was used as a tertiary treatment sys-
tem to meet the improved standards for the effluent of the 
wastewater treatment system. Based on our knowledge, this 
hybrid system for treating petroleum refinery wastewater 
has not been previously studied or reported in the literature.

On the whole, modeling can be used as a practical 
approach to monitor the changes over time of water and 
wastewater treatment systems and predict effluent qual-
ity parameters. Recently, artificial neural network (ANN) 
methods have been used for various areas of environ-
mental issues such as wastewater and water treatment 
[18–20]. While wastewater treatment processes are pretty 
complicated, the improvements in intelligent methods 
make them possible to employ in the modeling of com-
plex systems [21]. In this study, a multi-layer perceptron 
neural network (MLP-NN) was used to predict wastewa-
ter characteristics at the effluent of the petroleum refin-
ery wastewater treatment system. The MLP-NN model is 
developed as a reliable predictive tool to monitor wastewa-
ter characteristics in the hybrid wastewater treatment sys-
tem. Additionally, the importance of operating parameters 
is investigated in the modeling process by MLP-NN.

2. Materials and methods

2.1. Wastewater characteristics

The pilot plant was located in the Tehran Oil Refining 
Company in the city of Tehran, Iran. The influent of our 
hybrid treatment system was actual petroleum refinery 
wastewater from the Tehran refinery wastewater treatment 
plant. Analyses of the influent to the pilot were performed 
for four months before designing the pilot plant. The max-
imum values indicated that the raw wastewater character-
istics were roughly in the range of petroleum wastewaters 
which had been treated by other activated sludge systems 
[11–14]. The effluent of the dissolved air flotation (DAF) 
unit in the refinery wastewater treatment plant was used 
as raw wastewater. The maximum, minimum, and average 
values of the influent characteristics are given in Table 1.

2.2. Pilot plant

The hybrid activated sludge system consisted of a 
feeding tank, an aeration basin, which was filled with 
Kaldnes type 2 carriers, a settling tank, and an activated car-
bon column for tertiary treatment (Fig. 1). The configuration 
of the pilot plant is given in Table 2. The feeding tank was 
made of plastic and was 1.5 m above the ground level to 

Table 1
Petroleum refinery wastewater characteristics

Tu (NTU)pHCOD (mg/L)BOD5 (mg/L)TDS (mg/L)TSS (mg/L)NH3 (mg/L)Oil (mg/L)DO (mg/L)Parameter

29.98.2280802,0006715871.5Maximum
23.87.6200551,68147.59550.85Average
17.77.1120301,362283230.2Minimum
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establish a continuous flow. About 50% of the aeration basin 
with a volume of 0.05 m3 was filled with biofilm carriers. 
Table 3 presents the characteristics of Kaldnes type two car-
riers used in this study. Fig. 2 shows the photos of biofilm 
carriers before and after usage in the wastewater treatment 
system and biofilms in the aeration basin. An air compres-
sor supplied airflow to the wastewater treatment system 
through diffusers lying on the bottom of the aeration basin 
to provide oxygen for the aeration basin and also ensure 
mixing in the reactor. Four aquarium heaters were used 
with temperature variations of 25°C–35°C to maintain 
the temperature at 30°C. The Plexiglas settling tank had a 
trapezoidal shape part since this can help sludge and sus-
pended solids settle quickly. A pump was put in the bot-
tom of the settling tank to return settled sludge to aeration 
basin with a specific flow. A cylindrical tank was used to 
build the granular activated carbon column. A 20 cm layer 
of gravel with two parts was placed at the bottom of the 
granular activated carbon column to allow drainage, and a 
layer of sand was added above the gravel layer to support 
the granular activated carbon and prevent it from escaping 
through the drainage layer. The main layer of the granular 
activated carbon column consisted of new granular acti-
vated carbon. The specification of granular activated carbon 
is given in Table 4.

2.3. Operating conditions

After adding biofilm carriers to the aeration basin 
(50% of the basin, which is equal to 25 L), half of the 

effective volume of the aeration basin was filled with return 
activated sludge of the aeration basin unit of the petro-
leum refinery wastewater treatment plant. Mixed liquor 
suspended solids (MLSS), mixed liquor volatile suspended 
solids (MLVSS), and pH for return activated sludge were 
1,234 mg/L, 339 mg/L, and 7, respectively. The remaining 
volume was filled with wastewater passed through the DAF 
unit. Activated sludge and wastewater were daily added 
to the aeration basin to provide organics and nutrients 
required for the growth of microorganisms. This process 
had been done 25 times before we started pilot testing. In 
other words, 25 cycles of treatment had been done during the 
operational period. During the adaptation phase, the tem-
perature varied from 25°C to 35°C, and the pH was between 
6.5 and 8.5. It was observed that after 7.5 h aeration in the 

Fig. 1. Configuration of the pilot plant and the process used in this study.

Table 2
Configuration of pilot plant

Length (cm) Width (cm) Height (cm) Radius (cm) Volume (L)

Feeding tank – – 96 32 300
Aeration basin 35 35 40 – 50
Settling tank 30 16 25 – 12
Activated carbon column – – 75 16 60

Table 3
Characteristics of Kaldnes type 2 carriers used in this study

ValueParameter

13 ± 2Length (mm)
30Diameter (mm)
WhiteColor
HDPEMaterial
4Hole numbers
110 ± 3Weight per m3 (kg)
6,000BOD5 oxidation efficiency (gBOD5/m3 d)
460Specific surface area (m2/m3)
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aeration basin, the COD removal rate decreases because 
of the decline in the concentration of MLVSS. This decline 
can be attributed to the decrease in the food to microor-
ganism ratio and death of microorganisms in the aeration 
basin, which increases COD concentration. Also, according 
to the dimensions of the settling tank and inlet wastewa-
ter flow rate, settling time in the activated sludge system 
was 2.5 h. Therefore, 10 h optimum was chosen for the 
whole hybrid treatment system as the optimum hydraulic 

retention time. Settling tank and the granular activated 
carbon column were added to the system after the adap-
tation phase. Petroleum refinery wastewater was added to 
the feeding tank by a pump; wastewater samples were col-
lected to measure the influent wastewater characteristics. 
The aeration basin was filled with 50% carriers, and after 
that raw wastewater with approximately 80 mL/min flow 
rate was discharged into the aeration basin. Afterward, the 
treated wastewater from the settling tank passed through 
the granular activated carbon column for tertiary treatment.

2.4. Analytical method

Temperature, turbidity, pH, oil, COD, BOD5, dis-
solved oxygen (DO), total suspended solids (TSS), MLSS, 
MLVSS, ammonia (NH3), and total dissolved solids (TDS) 
were measured in this study. The temperature and the pH 
were measured by a digital pH meter. Turbidity was mea-
sured by PC CECKIT Loviband, and TDS was measured 
by AZ8371. A spectrophotometer (Loviband Laboratory 
Spectrophotometer) was used to measure COD and NH3 
at the petroleum refinery wastewater treatment plant lab-
oratory. TSS, MLSS, DO, BOD5, Oil, and MLVSS were 
measured according to standard methods [22].

(a) (b)

(c)

Fig. 2. Biofilm carriers before and after usage in the system (a and b) and in the aeration basin (c).

Table 4
Specification of granular activated carbon

ValueParameter

Black granularAppearance
Maximum 10%Moisture
Maximum 5%Ash
6.5–10pH
Minimum 85%Hardness
650 ± 50Bulk density (kg/m3)
500Surface area (m2/gm)
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2.5. NN-based model development

Overall, neural networks (NNs) are inspired by bio-
logical neural networks, and they are also computing 
systems [23]. Moreover, the NNs try to project a relation-
ship between outputs and inputs of each network only 
by considering examples from the training data set and 
without being programmed with any task-specific rules. 
NNs are appropriate for solving the problem of the map-
ping from one set to another due to their ability of well 
nonlinear mapping; hence, this is one of the most import-
ant advantages of NNs [24]. The NNs commonly consist 
of many artificial neurons operating in parallel, and the 
connections among neurons determine the function of the 
network [25]. A neuron is a computational processor; this 
has a transfer function that is used to weight inputs, and 
the result is the output of the neuron. A single-layer neural 
network cannot detect the relationship between the number 
outputs and inputs of the network; therefore, a MLP is used 
for building the NN models. An MLP-NN with three lay-
ers, including an input layer, a hidden layer with 15 neu-
rons, and an output layer, was used in this study. In this 
study, the single-output MLP-NN, implemented with M 
neurons in the hidden layer, can be expressed by Eq. (1):

y w x x bW
i

i

M

, ,( ) = ×( ) +









=
∑φout out ih out

1

 (1)

where Wi,out is the weight between the ith neuron in the 
hidden layer and the output neuron, φout is the transfer 
function of the output layer, bout is the bias of output neu-
ron, and xih is the output of each neuron in the hidden 
layer, and this is calculated by Eq. (2):
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where φh is the transfer function of the hidden layer, N 
is the number of inputs, bn is the bias of nth neuron in the 
hidden layer, Wi,n is the weight between the ith input and 
the nth neuron in the hidden layer, and xi is the ith input.

Fig. 3 shows the architecture of the MLP-NN used in 
the study for the prediction of effluent wastewater charac-
teristics. Seven parameters, including influent COD, BOD5, 
TSS, NH3, Do, pH, and turbidity, were used as inputs of 
the MLP-NN to predict effluent COD, turbidity, NH3, and 
TSS. Table 5 shows the characteristics of input and output 
variables in the NN modeling process. Through a random 
data division, the data set was divided into three sets, 70% 
for training, 15% for testing, and 15% for validation of the 
MLP-NN model. In this study, the Levenberg–Marquardt 
algorithm was used for training the MLP-NN model. The 
performance of the MLP-NN model in predicting effluent 
COD, turbidity, NH3, and TSS was measured using mean 
squared error (MSE) and correlation coefficient (R).

3. Results and discussion

3.1. Changes of pH and MLSS

During the treatment process, pH was monitored 
because of its effect on the treatability of wastewater in 
physical/chemical and biological treatment processes [26]. 
pH was observed in the treatment process, and pH values 
varied from 7 to 8.5. Therefore, the treatment system and 
microorganisms did not experience any shock during the 
treatment process. MLSS was significant due to its influence 

Fig. 3. Architecture of MLP-NN model for the prediction of effluent COD, turbidity, NH3, and TSS.
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on the treatment and settleability, hence, the activity of 
microorganisms within our treatment system was moni-
tored by measuring MLSS [27]. MLSS during the aeration 
stage in the activated sludge system was constant, and 
that indicated that the biological wastewater treatment 
system was stable.

3.2. COD removal efficiency

Fig. 4 shows the changes of COD concentration in the 
petroleum refinery wastewater and also the removal effi-
ciencies after the activated sludge system with biofilm 
carriers and the granular activated carbon column. The 
influent COD concentration in the raw petroleum refinery 
wastewater was about 193 ± 50 mg/L, which decreased to 
12.5 ± 8 mg/L in the effluent (lower than the standard limit 
of 60 mg/L by U.S. EPA) [28]. In Fig. 4, the standard devia-
tion for raw wastewater, effluent after the activated sludge 
system, and effluent after the granular activated carbon col-
umn are 40.7, 9.0, and 5.3, respectively. The average COD 
removal efficiency after the activated sludge system with 
carriers was 87%, and the removal efficiency increased to 
93% after the granular activated carbon column. The results 
of this study indicate that the activated sludge system with 
biofilm carriers in the biological reactor, and granular acti-
vated carbon is effective in terms of COD removal. The 
microorganisms in our hybrid system (suspended/attached 
growth), have a higher ability to remove organic carbon 
than an activated sludge system with the single suspended 
growth process [29]. The integrated petroleum refinery 

wastewater treatment system showed higher COD removal 
efficiency as compared with a conventional activated sludge 
process coupled with an immobilized biological filter uti-
lized by Tong et al. [30] with a removal efficiency of around 
64% in the treatment of heavy oil wastewater. Additionally, 
COD removal in our hybrid system is higher than a hybrid 
oil refinery wastewater treatment system, which consisted 
of a moving bed biofilm reactor (MBBR) and a slow-rate 
sand filter [31]. In another study, Shokrollahzadeh et al. 
[32] used an activated sludge system to treat petrochemi-
cal wastewater, and that system’s COD removal efficiency 
was lower than our hybrid system. Our hybrid wastewater 
treatment system also performed better, in terms of COD 
removal, than an aerated baffled reactor, which was coupled 
with an aerated biological filter [33].

3.3. TSS removal efficiency

The changes of TSS concentration and TSS removal 
efficiencies after the activated sludge system with biofilm 
carriers and the granular activated carbon column are 
shown in Fig. 5. Settling tank of the activated sludge sys-
tem and the granular activated carbon column are the two 
main steps of TSS removal in the hybrid wastewater treat-
ment system. The average influent TSS concentration of 
45 ± 5 mg/L decreased to 31 ± 3 mg/L after the settling tank 
and then decreased to 3.4 ± 1 mg/L in the effluent, which 
shows TSS removal efficiency of 92% for the hybrid sys-
tem. In Fig. 5, the standard deviation for raw wastewater, 

Table 5
Characteristics of the measured variables in the NN modeling process

ValueOutput variableValueInput variable

Effluent concentrationInfluent concentration
6–20COD (mg/L)140–260COD (mg/L)
0.02–2.9Turbidity (NTU)19.4–28.2Turbidity (NTU)
0.08–0.46NH3 (mg/L)3.2–4.6NH3 (mg/L)
0.3–7.5TSS (mg/L)38.7–51TSS (mg/L)
2.1–7.4BOD5 (mg/L)38–67.6BOD5 (mg/L)
3.2–3.8DO (mg/L)0.2–1DO (mg/L)
7.6–8pH7.5–8pH
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Fig. 4. COD concentration and removal efficiencies in the 
hybrid system.
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effluent after the activated sludge system, and effluent 
after the granular activated carbon column are 4.8, 3.8, and 
2.4, respectively. The results showed that the integrated 
system is effective for TSS removal in petroleum refinery 
wastewater. The hybrid system demonstrated a higher TSS 
removal efficiency in comparison to conventional activated 
sludge systems. In a study, Gasim et al. [34] used extended 
aeration activated sludge system for petroleum refinery 
wastewater treatment; the maximum TSS removal efficiency 
was 71%. The 92% TSS removal efficiency of our hybrid 
system is higher than the 65% TSS removal efficiency of a 
system developed by Ahmed et al. [35] in another study. 
The system was composed of three different configurations of 
sequencing batch reactors. In another study, Xie et al. [36] 
used an aerated biological filter process for the treatment of 
slightly polluted wastewater in an oil refinery. TSS removal 
efficiency was 83%, which is lower than TSS removal in our 
hybrid system. Comparing our results with Perez et al. [37], 
who applied an anaerobic thermophilic fluidized bed in 
the treatment of cutting-oil wastewater, our hybrid system 
is more effective than that system regarding TSS removal.

3.4. NH3 removal efficiency

The influent NH3 concentration in the raw wastewater 
was about 4 ± 0.5 mg/L, which decreased to 0.26 ± 0.2 mg/L in 
the effluent. The average ammonia removal efficiency after 
the activated sludge system with biofilm carriers was about 
90%, and the removal efficiency increased to about 94% after 
the granular activated carbon column. The standard devia-
tion for raw wastewater, effluent after the activated sludge 
system, and effluent after the granular activated carbon 
column are 0.5, 0.2, and 0.1, respectively. The results of this 
study indicate that the hybrid system with biofilm carriers 
in the aeration basin, and the granular activated carbon col-
umn is efficient in terms of NH3 removal. Mirbagheri et al. 
[38] used an activated sludge contact stabilization process 
to treat petroleum refinery wastewater; NH3 removal effi-
ciency in our hybrid system is higher than that system. In 
another study, Zhidong et al. [39] used a submerged mem-
brane bioreactor for oil refinery wastewater treatment; NH3 
removal in that research was approximately analogous 
to our research, but they used membranes, and they were 
confronted with membrane fouling problem which is an 
obstacle in these kinds of treatment systems [40]. Cao and 
Zhao [41] used an MBBR for treating petrochemical waste-
water. The 94% NH3 removal efficiency of our hybrid sys-
tem is higher than the approximately 80% NH3 removal 
efficiency of that wastewater treatment system. Hamoda 
and Al-Haddad [42] evaluated the performance of a fixed-
film reactor for treating petroleum refinery wastewater. 
NH3 removal in that wastewater system was lower than 
our hybrid system.

3.5. TDS and turbidity removal efficiencies

The TDS concentration in the influent wastewater was 
1,610 ± 200 mg/L and decreased to 950 ± 100 mg/L in the 
effluent. The TDS removal efficiency after the activated 
sludge system with biofilm carriers and the granular acti-
vated carbon column was approximately 41%. The standard 

deviation for raw wastewater and effluent after the granu-
lar activated carbon column are 249.7 and 82.8, respectively. 
The results of TDS removal in our hybrid petroleum refinery 
wastewater treatment system indicated that the system was 
effective for TDS removal. In a study, Salahi et al. [43] used 
polymeric membranes for the treatment of oily wastewater. 
TDS removal in that study was 31.6%, which is lower than 
TDS removal in our hybrid system. Noshadi et al. [44] eval-
uated the performance of an ultrafiltration (UF) wastewater 
treatment system for treating petroleum refinery wastewater. 
Forty-one percent of TDS removal in our hybrid system is 
higher than 23% TDS removal in that system. In another 
study, Aziz et al. [45] reported TDS removal efficiency of 
approximately 20% for a sequencing batch reactor system in 
the best conditions. TDS removal in that wastewater treat-
ment system is lower than TDS removal in our hybrid system.

The hybrid system indicated high performance in 
terms of turbidity removal mainly because of the settling 
tank and the granular activated carbon column. The aver-
age turbidity of the oil refinery wastewater was 24 ± 5 NTU, 
which decreased to 11.5 ± 2 and 1.5 ± 1 NTU after the settling 
tank and the granular activated carbon column, respectively. 
The standard deviation for raw wastewater, effluent after 
the activated sludge system, and effluent after the granular 
activated carbon column are 3.5, 1.6, and 0.9, respectively. 
The turbidity removal efficiency was approximately 94% 
at the end of the integrated petroleum refinery wastewa-
ter treatment system. The results of this study showed that 
the integrated system is efficient for the removal of turbid-
ity in wastewater with higher efficiencies than other kinds 
of hybrid wastewater treatment systems [46]. In a study, 
Velioĝlu et al. [47] used an activated sludge system for 
treating olive oil-bearing wastewater; turbidity removal in 
that system was lower than our hybrid system. The average 
turbidity removal in our hybrid system is higher than the 
average turbidity removal of a batch electrochemical reac-
tor, which was used by Körbahti and Artut [48] for treating 
bilge water. In another study, Pendashteh et al. [49] used 
a sequencing batch reactor for treating produced water. 
The average turbidity of the effluent in that wastewater 
treatment system was higher than the average turbidity 
of the effluent in our hybrid system.

3.6. Oil removal efficiency

The influent oil of 44 ± 10 mg/L after the hybrid petro-
leum refinery wastewater treatment system deceased to 
8 ± 5 mg/L. The oil removal efficiency was approximately 
82% at the end of the integrated petroleum refinery waste-
water treatment system. The standard deviation for raw 
wastewater and effluent after the granular activated carbon 
column are 8.2 and 5.9, respectively. The results indicated 
that the hybrid system is effective in oil removal from petro-
leum refinery wastewater. The oil removal efficiency of our 
integrated system is higher than an oil refinery wastewa-
ter treatment system, which was used by Otadi et al. [50]. 
That system consisted of a DAF system, an activated sludge 
system, and a clarifier. Oil removal in our hybrid system 
is higher than oil removal in a system, which was used by 
Dumore and Mukhopadhyay [51]. Comparing our results 
with the findings of Wang et al. [52], who applied an up-flow 
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anaerobic sludge bed (UASB) reactor for treating heavy 
oil refinery wastewater and achieved the oil removal effi-
ciency of up to 72%, our hybrid activated sludge system is 
more efficient. Sekman et al. [53] used electrocoagulation 
for treating oily wastewater. Oil removal in that system is 
lower than oil removal in our system.

3.7. NN-based prediction of effluent characteristics

In this study, various network architectures with 
neurons at the hidden layer were tested to predict COD, tur-
bidity, NH3, and TSS. The three-layer MLP-NN was chosen 
to keep the network as simple as possible after a lot of pre-
liminary experiments for each output. Whereas using more 
hidden neurons in the neural networks might improve the 
performance, employing too many neurons may result in 
over-fitting, which undermines the generalization capacity 
of the model [54]. Therefore, MLP-NN with three layers and 
15 neurons in the hidden layer brought about higher accu-
racies for most of the tested architectures and the effluent 
characteristics. Optimal architecture is essential for training 
the algorithm with appropriate speed and short simulation 
time for particular network performance [55]. The training 
procedure of the MLP-NN model was promising for the pre-
diction of effluent COD, turbidity, NH3, and TSS. The results 

of the prediction for the four effluent characteristics using 
the MLP-NN algorithm are shown in Fig. 6. The results of 
the different data almost showed a perfect match between 
experimental values and predicted values for the effluent 
COD, turbidity, NH3, and TSS. The results of this study con-
firm the high generalization capability of the MLP-NN algo-
rithm, and this has been reported in some studies [19,56].

Fig. 7 shows the regression lines for the MLP-NN model 
predicting effluent COD, turbidity, NH3, and TSS based on 
the train and all data sets. The high correlation of predicted 
values with experimental values is confirmed by the results. 
The R values for the MLP-NN model predicting effluent 
COD were 1 and 0.973 based on the train and all data sets. 
The MSE values for the prediction of effluent COD based on 
the train and all data sets were 2.8e-08 and 0.221, respectively. 
For the prediction of effluent turbidity using MLP-NN, the 
R values were 1 and 0.998, respectively. The MSE values 
for the MLP-NN predicting effluent turbidity were 5.5e-08 
and 0.008 based on the train and all data sets. The R values 
for the MLP-NN model predicting effluent NH3 were 0.948 
and 0.925 based on the train and all data sets. The MSE 
values in the prediction of effluent NH3 based on the train 
and all data sets were 2.8e-03 and 2.7e-03, respectively. For 
the prediction of effluent TSS using MLP-NN, the R values 
were 0.982 and 0.948, respectively. The MSE values for the 
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Fig. 6. Prediction of (a) effluent COD, (b) effluent turbidity, (c) effluent NH3, and (d) effluent TSS using MLP-NN model.
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MLP-NN predicting effluent TSS were 0.353 and 0.718 based 
on the train and all data sets. The results of our modeling 
for the prediction of effluent characteristics using MLP-NN 
show higher accuracies than previously developed models 
[57,58]. The optimal architecture of the MLP-NN model in 
this study was found to be reliable because the error based on 
the train and all data sets approached zero for effluent COD, 
turbidity, NH3, and TSS.

4. Conclusion

In this study, an activated sludge system was coupled 
with biofilm carriers, and a granular activated carbon col-
umn was used at the end of the wastewater treatment pro-
cess to improve the performance of petroleum refinery 
wastewater treatment. To make a tradeoff between sus-
pended growth and attached growth, 50% of the aeration 
basin of the activated sludge system was filled with biofilm 
carriers. With the HRT of 10 h, COD, turbidity, NH3, and 
TSS removal efficiencies were 93%, 94%, 94%, and 92%, 
respectively. In our hybrid wastewater treatment system, 
the removal efficiencies were higher than as compared to 
conventional activated sludge systems and MBBRs. The 
application of a granular activated carbon column as a post- 
treatment step after the biological wastewater treatment is a 
promising technology for wastewater reclamation and reuse 
in countries, which are plagued with the water crisis. The 
results of our hybrid system indicate that NN is a practical 
modeling approach for the prediction of wastewater char-
acteristics. According to the findings, MLP-NN is a capable 
tool to monitor the characteristics of the effluent wastewater.
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