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a b s t r a c t
The aim of this study is to assess the spatial variability of groundwater quality parameters. 
Geographic information systems multivariate statistical techniques and nonparametric kriging 
methods were used to analyze the correlational structure and spatial pattern of groundwater quality 
parameters in the major cities of Pakistan. The hydro-chemical results of 366 water samples were 
taken from the Pakistan Council of Research in Water Resources (PCRWR) report 2015–2016 of 25 
major cities of Pakistan. The correlation matrix was used to identify the highly correlated ground-
water quality parameters. The principal component analysis and cluster analysis categorized the 
quality parameters according to the variation. The results indicated that seven water quality param-
eters including electric conductivity, calcium (Ca), magnesium (Mg), hardness, sodium (Na), sul-
fate (SO4) and total dissolved solids were found exceeding the permissible limits of World Health 
Organization (WHO). Due to highly skewed data, nonparametric kriging methods were used to 
estimate the probability of concentration of groundwater quality parameters and to produce pre-
diction maps. Cross-validation statistics demonstrated that the indicator kriging method showed 
better performance than ordinary kriging and co-kriging methods for mapping groundwater quality 
parameters. Overall water quality results showed that only 113 (31%) out of 366 water samples were 
suitable for drinking, whereas 253 (69%) were not safe drinking water. This study highlights the use 
of nonparametric kriging methods for non-normal data and concludes that solid waste and sew-
age systems should be developed to reduce the contamination of groundwater resources.

Keywords:  Groundwater quality; Health effects; Geographic information systems, Geostatistical 
analysis; Pakistan

1. Introduction

Water is necessary for sustaining life and development 
on earth. Groundwater is an important source of freshwater 
and plays a vital role in sustaining industrial, agricultural 
and human activities [1]. The rapid increase in population, 
urbanization, and industrialization have increased ground-
water contamination [2]. It has been observed that urban 
growth increased anthropogenic activities like wastewa-
ter discharge and nutrient excess which lead to impaired 

quality of water [3]. In developing countries, a huge part 
of the population has undergone health problems due to 
a shortage of drinking water or contaminated drinking 
water [4]. Pakistan has been observed as a water-stressed 
region and the potential of water-scarce in near future [5]. 
It was detected that 40% of all deaths and 30% of all dis-
eases were due to unsafe drinking water in Pakistan [6]. 
The World Bank report revealed that Pakistan is ranked at 
140 out of 180 countries on the environmental performance 
index and 64% of peoples in Pakistan have no access to safe 
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and clean drinking water [7]. Contaminants include pesti-
cides and many other metals have been found in the drink-
ing water of major cities of Pakistan [8–13].

The drinking water quality is assessed through the 
existence of eminent levels of physiochemical toxins and 
their health effects [14]. Environment Protection Agency 
(EPA) has examined that more than 200 organic compounds 
are present in drinking water [15]. Some of the coastal 
groundwater aquifers were found contaminated by seawa-
ter intrusion [16]. The World Health Organization (WHO) 
notifies that the hazardous power of hydrogen (PH) lev-
els may cause many skin and eye infections. The arsenic- 
contaminated water causes cancer of lungs, bladder, and 
membrane. It can also be the cause of skin thickness and 
pigmentation [17]. Drinking water with a higher total dis-
solved solids (TDS) level causes gastric problems and bone 
diseases [18].

Geographic information systems (GIS) have been used 
for evaluating the spatial variability in water quality param-
eters [19]. Various nonparametric kriging techniques like 
ordinary kriging, Co-kriging, and Indicator kriging are 
being used widely for assessment and prediction of spa-
tial variability of groundwater quality parameters [20,21]. 
Talaee [22] used ordinary kriging to estimate the spatial 
pattern of groundwater depth and quality parameters in the 
Ardabil plain in the northwest of Iran. Their results showed 
that the water quality parameters (chloride, pH sulfate, 
sodium, bicarbonate, calcium, magnesium, and hardness) 
were exceeding the permissible limits. In another study, 
Adhikary [23] used two nonparametric indicator kriging 
and probability kriging methods for assessment of Cu, Fe, 
and Mn concentration in drinking water in Delhi, India. 
They found that the study area is under risk for a higher con-
centrations of Cu, Fe, and Mn at 26.34%, 65.36%, and 99.55%, 
respectively. Using the indicator kriging and ordinary krig-
ing, Delbari [24] reported that in Iran the groundwater 
quality parameters (electric conductivity, sodium, chlorine, 
and sodium absorption ratio) were crossing the threshold 
limits. The indicator kriging and ordinary kriging were used 
to evaluate the spatial distribution of groundwater quality 
parameters in Western and Southern Algeria. Their results 
indicated that alkalinity was slightly higher than the per-
missible limits [25]. Multivariate statistical techniques such 
as cluster analysis (CA) and principal component analysis 
(PCA) have been used for monitoring and predicting ground-
water quality parameters in eastern Tunisia [26]. Their 
results showed that sulfate, sodium, chloride, and TDS were 
higher in the collected groundwater samples from saltwa-
ter intrusion [27]. Djemai [28] examined that the PCA allows 
to confirm the principal chemical facies and also favors to 
differentiate the aters of upper and middle Seaou River.

The main objective of this study was to identify the 
correlational structure of the considered groundwater 
quality parameters and to assess the spatial variability of 
the significant parameters in the major cities of Pakistan. 
GIS multivariate statistical techniques, CA and PCA were 
applied to identify the group of correlated parameters. 
Moreover, the geospatial nonparametric ordinary kriging, 
co-kriging, and indicator kriging techniques were used to 
develop the prediction maps for the significant water qual-
ity parameters.

2. Material and methods

2.1. Study area

Pakistan is located in southern Asia, having neighbors 
India in the east, Afghanistan in the northwest, China in 
northeast and Iran in the west (Fig. 1). Pakistan covers an 
area of 881,913 km2 and the total population is 220 million 
according to the census of 2017.

The primary water resources in Pakistan are rainwater, 
groundwater, and rivers. The leading rivers are the Indus, 
Sutlej, Chenab, Beas, Jhelum, Sindh, and Kabul. The cli-
mate in the major parts of the region is dry; however humid 
condition prevails over a small area in the north. The aver-
age yearly rainfall in the most of area of Pakistan is below 
250 mm and the rainiest area in Murree (Rawalpindi) with 
an average annual rain of around 1,484 mm. Pakistan has 
four seasons; a cool and dry winter from December to 
February; dry spring from March to May; summer/rainy 
season from June to September and autumn from October 
to November. Monsoon precipitation is the lifeline of 
Pakistan’s water resources which falls in summer from July 
to September. Topographically, Pakistan can be divided into 
six main areas; the northern mountains, western mountains, 
Baluchistan plateau, Pothohar plateau and salt range, Indus 
River plain, and desert areas [29].

2.2. Groundwater sampling

A water quality monitoring survey was conducted by the 
Pakistan Council of Research in Water Resources (PCRWR) 
in 2015–2016 that included 25 major cities including Karachi, 
Lahore, Faisalabad, Rawalpindi, Gujranwala, Peshawar, 
Multan, Hyderabad, Islamabad, Quetta, Bahawalpur, 
Sargodha, Sialkot, Sukkur, Sheikhupura, Gujrat, Mardan, 
Kasur, Mingora, Muzaffarabad, Abbottabad, Badin, Loralai, 
Ziarat and Gilgit [30]. In this study, groundwater quality 
data of 366 locations (Fig. 1) from the 25 major cities of 
Pakistan were taken from the PCRWR survey (2015–2016). 
Samples were collected from selected wells, taps, hand 
pumps, streams, and water supply schemes. A minimum 
distance of 1 km and a maximum of 16 km was main-
tained between the two monitoring sites. Preferences were 
given to the permanent public places and the water sam-
ples were collected in clean sterile plastic bottles of 0.5 and 
1.5 L capacities. Before collecting the samples bottles were 
washed properly. Boric acid and nitric acid were added as a 
preservative in the sampling bottles for trace elements. The 
samples were kept cool and in the dark while transporting 
to the laboratory. Further detail of the chemical analysis of 
the samples can be accessed by following the link provided 
in the supplementary material section. Groundwater sam-
ples were examined for eleven physiochemical parameters 
including electric conductivity, power of hydrogen, bicar-
bonate, calcium, magnesium, hardness, sodium, potassium, 
sulfate, TDS, and arsenic.

2.3. Multivariate statistics

Multivariate statistical tools are widely used in the 
analysis of groundwater quality parameters. The correlation 
coefficients rij between the ith and jth variables are as follows:
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The correlation matrix R is widely used for the identifica-
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PCA is extensively used for dimensionality reduction. 
PCA transforms the correlated variables into uncorrelated 
orthogonal factors by using the linear transformation. The 
first component carries the most information regarding 
the original data [31]. PCA facilitates the identification of the 
most significant groundwater quality parameters and pro-
vides information about the acquired chemical properties 
[32]. Cluster analysis (CA) is mostly used for grouping a set 
of objects in such a way that the objects in the same group 
(cluster) are more similar while dissimilar to the objects in 
other groups or clusters [31].

2.4. Variogram models

Variogram models are fitted because the spatial pre-
diction (kriging) requires the estimates of the variogram. 

The matern model is also called Whittle–Matern model 
after the name of Whittle. It is used to define the spatial 
covariance between two points.
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where |h|  >  0  and  τ2,  σ2, v and ∅  ≥  0  where Kv is Bassel 
functionality of order v. This particular variogram model 
is an intermediate option among Gaussian and exponential 
model [33].

The exponential method for spatial correlation is:
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for |h| > 0 and τ2, σ2, and ∅ ≥ 0 where, where τ2 + σ2 is the 
sill and τ2 are called the real nugget effect of the model [34].

The mathematical model of the spherical family is 
described as:
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for τ2, σ2 and ∅ ≥ 0. Spherical model gradually increases from 
the nugget effect τ2  to  sill quantity τ2 + σ2 when the spatial 
lag quantity h ≥ ∅ [34].

Fig. 1. The study site and sampling locations of major cities of Pakistan.
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2.5. Kriging

Kriging techniques are frequently used for the predic-
tion and estimation of spatial data. Ordinary kriging (OK) 
method assumes constant unknown mean over the search 
neighborhood. OK estimator is defined as following [35]:
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where Z(x0) is the estimated value at ungauged locations x0, 
n is the numbers of neighboring points and λi is the weight 
allocated to the measured value Z(xi).

Co-kriging is a multivariate extension of the kriging 
system when auxiliary variables can be used to improve the 
accuracy of the kriging estimate [36]. Co-kriging is a very 
flexible spatial interpolation technique that allows the user to 
examine the graphs of autocorrelation and cross-correlation. 
The general equation of co-kriging estimator is:
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for all v = 1, 2, …, V and j = 1, 2, …, nj. The quantity λil is 
the weight  function  and γlv(xi, xj) is the cross-semivariance 
between variables l and v at sites xi and xj. Where uv is the 
langrage multiplier for vth variable [35].

Indicator kriging (IK) uses a binary variable (indica-
tor variable) to generate probabilities that a critical value 
was exceeded or not at each location in the study area. 
The indicator variable divides the original data into binary 
data according to threshold values. The indicator variable 
I(xi;zk) for the given continuous variable Z(xi) is given as 
described in [36]:
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where K is the number of thresholds and zk is the desired 
threshold. The experimental semivariogram is defined for 
each set of indicators.
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where h is the distance between xi and xi + h and N(h) is the 
number of pairs after binary transformation. I(xi;zk) and 
I(xi + h;zk) are the indicator variables separated by the vector h. 
The indicator kriging estimator [36] can be calculated as:
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where λ is the weight coefficient.

2.6. Evaluation of kriging methods

Cross-validation was used to evaluate the predictive 
performance. Three non-parametric kriging methods were 

considered in this study and were compared for mean error 
(ME), mean square error (MSE), and root mean square error 
(RMSE). Cross-validation can be calculated as following [37]:
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where z(xi) is the observed value at location xi, z*(xi) is the 
predicted measure at the same location xi and n is the num-
ber of pairs of measured and predicted values. The ME 
value near to zero is an indicator of a better model. A model 
with a minimum value of MSE and RMSE is considered 
the best-fit model among the others.

3. Results and discussion

3.1. Descriptive analysis

The hydrochemical results of the water quality param-
eters of electric conductivity (EC), bicarbonate (HCO3), cal-
cium (Ca), magnesium (Mg), hardness (HARD), sodium 
(Na), potassium (K), sulfate (SO4), power of hydrogen 
(pH), TDS, and arsenic (As) were used for assessment of 
the groundwater quality in the major cities of Pakistan. 
R-Language and ArcGIS 10.7 software was used for the 
descriptive and geostatistical analysis of the measured 
water quality parameters. The descriptive statistics of water 
quality parameters along with their corresponding WHO 
permissible limits are listed in Table 1. The results show 
that the measured water quality parameters are higher 
than the WHO permissible limits. The EC ranges from 74.1 
to  30,000  µS/cm whereas  its  permissible  limit  is  ≤300  µS/
cm. The measured water hardness at some sites reaches 
3,400 mg/L;  the WHO  limit  is  ≤500 mg/L.  The Na  ranges 
from 0.70 to 3,820 mg/L and the mean value is 133.72 mg/L. 
The TDS ranges widely from 37 to 13,997.4 mg/L and the 
WHO  permissible  limit  is  ≤1,000  mg/L.  As  concentration 
reaches up to 106 µg/L at some locations. The WHO stan-
dard  limit of As  is  (≤50 µg/L). The  standard deviations of 
the water quality parameters show a large variation in the 
measured parameters. The values of skewness and kurtosis 
for the measure water quality parameters, except pH, show 
a non-normal distribution of the considered water quality 
parameters.

3.2. Principal component analysis

The PCA was used to identify the factors of the water 
quality parameters EC, pH, HCO3, Ca, Mg, HARD, Na, K, 
SO4, TDS, and As. The analysis generated three axes that 
collectively account for 83.96% of total variation (Table 2). 
The first and the most important axis accounts for 70.96% of 
total variation and associated with higher loading of seven 
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water quality parameters EC, Ca, Mg, HARD, Na, SO4, and 
TDS. The higher loadings (>0.80) of the seven water quality 
parameters indicated that they are the major parameters con-
trolling the water quality dataset. The second axis accounts 
for only 12.01% of total variation and has positive loadings 
for water quality parameters Ca, Mg, SO4, and TDS. The third 
axis accounts for 10.99% of total variation and has a posi-
tive loading for HCO3. Moreover, the bivariate correlations 
show that EC is highly correlated with Mg, HARD, Na, TDS 
(r ≥ 0.90), and also has a higher correlation with Ca and SO4 
(r ≥ 0.80). The Mg is correlated with HARD, EC, Na, SO4, and 
TDS (r ≥ 0.85). The Na is also correlated with TDS and SO4. 
The HARD is correlated with Ca, SO4, Na, and TDS (Fig. 2).

3.3. Cluster analysis

Cluster analysis was performed to evaluate the most 
significant parameters of the water quality dataset (Fig. 3). 

The eleven water quality parameters were clustered into 
four classes (clusters). The dendrogram demonstrated that 
the first cluster consists of EC, TDS, Na, Mg, HARD, HCO3, 
SO4, and Ca. The pH has a negative correlation with all other 
water quality parameters and was clustered in a separate 
class. The dendrogram showed that the K and As have lower 
correlation with the other parameters, and therefore they 
were clustered in a separate class. It is also noted that the 
results of Ca confirm the classification of PCA.

3.4. Geostatistical analysis

The CA indicated that the EC, Ca, Mg, HARD, Na, SO4, 
and TDS are the most significant parameters which affect 
the groundwater quality in the study area. The best- fitted 
theoretical models for the semivariogram of the seven 
water quality parameters are listed in Table 3. The nug-
get, sill, and range values of best-fitted models were esti-
mated by the restricted maximum likelihood (REML) and 
weighted least square (WLS) methods (Table 3). The results 
showed that the REML estimation technique and Matern 
model were best fitted for EC concentration (R2 = 0.92). 
The Matern semivariogram model was best fitted for Mg, 
Na, and TDS concentration, whereas the spherical model 
was appropriate for Ca and SO4. The best estimation for 
the water quality parameters EC, Ca, HARD, and SO4 was 
given by the REML method. The best estimate for Mg, Na, 
and TDS was given by WLS. The exponential semivario-
gram model was the best for the hardness water quality  
parameter.

Cross-variogram was used to assess the cross-correla-
tion structure of the water quality parameters. The semivar-
iograms indicated that the spatial structure has the largest 
component of the nugget effect for most of the parameters 
(Fig. 4 and Table 3). It shows that the variogram models Na–
SO4; TDS-SO4; EC-TDS; EC-Mg; Mg-HARD; TDS-HARD; 
EC-HARD; Na–Mg have correlation 0.89, 0.92, 0.990.91, 0.95, 
0.93, 0.92, and 0.88, respectively. The lowest spatial cross- 
correlation was found between the pairs of Ca–SO4, Ca–Na, 
Ca–Mg.

Table 1
Descriptive statistics of physicochemical parameters in groundwater of major cities of Pakistan

Parameters Units Permissible 
WHO limits

Minimum Maximum Mean Standard 
deviation

Skewness Kurtosis

EC µS/cm ≤300 74.10 30,000.00 1,156.64 24,98.57 8.40 80.90
pH mg/L 6.5–8.5 6.70 8.70 7.60 0.30 0.01 0.36
HCO3 mg/L Not specified 20.00 1,190.00 239.09 152.98 2.20 7.94
Ca mg/L ≤250 7.50 480.00 60.59 46.05 4.43 30.11
Mg mg/L ≤150 0.97 583.20 34.64 53.65 6.21 47.95
HARD mg/L ≤500 0.00 3,400.00 276.87 321.45 5.86 45.10
Na mg/L ≤200 0.70 3,820.00 133.72 365.03 7.52 65.43
K mg/L ≤12 0.00 355.00 17.20 51.03 4.63 22.76
SO4 mg/L ≤500 0.00 2,640.00 136.48 293.69 5.48 34.03
TDS mg/L ≤1000 37.00 13,997.40 671.07 1,264.82 7.41 64.29
As µg/L 50 0.00 106.40 10.05 20.45 2.72 7.18

Table 2
The pattern of rotated factors of eleven water quality parameters 
using varimax rotation along with variance

Variable Factor 1 Factor 2 Factor 3

TDS 0.972 0.027 –0.154
EC 0.960 –0.069 –0.162
HARD 0.958 –0.034 –0.117
Mg 0.947 0.060 –0.044
Na 0.946 –0.104 –0.132
SO4 0.934 0.569 –0.095
Ca 0.838 0.188 –0.200
HCO3 0.683 –0.112 0.506
K 0.044 –0.083 0.199
pH –0.351 –0.544 –0.266
As –0.030 –0.056 –0.440
% Variance 70.960 12.010 10.990
Cumulative % variance 70.960 82.970 83.960
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3.5. Comparison of kriging methods

Cross-validation statistics were calculated for the water 
quality parameters to determine the predictive performance 
of theoretical models. The ME, MSE, and RMSE were cal-
culated for the significant water quality parameters EC, Ca, 
Mg, HARD, Na, SO4, and TDS (Table 4). It was observed 
that the ME of Indicator kriging method is smaller than 

that for ordinary kriging and co-kriging. Ideally, the ME 
should converge to zero. The MSE and RMSE values of 
the seven water quality parameters are very high due to 
higher variation in the water quality dataset. The statistical 
results show that the Indicator kriging method has the low-
est values of ME, MSE, and RMSE for the considered water 
quality parameters except for the Ca. This indicates that the 
accuracy of indicator kriging is higher than the accuracy of 
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Table 3
Semivariogram parameters of the best fitted theoretical models of water quality parameters

Groundwater 
parameters

Best-fitted  
model

Estimation  
method

Sill (σ2) Range (φ) 
(meters)

Nugget (τ2) R2

EC Matern REML 2.02 × 108 2.50 × 102 4.82 × 106 0.92
Ca Spherical REML 4.37 × 102 0.123 1.55 × 103 0.83
Mg Matern WLS 3.59 × 103 1.40 × 104 2.87 × 103 0.90
HARD Exponential REML 2.95 × 105 19.26 7.79 × 104 0.76
Na Matern WLS 3.80 × 105 3.86 × 104 1.33 × 105 0.87
SO4 Spherical REML 2.01 × 104 0.48 5.86 × 104 0.83
TDS Matern WLS 4.25 × 106 4.16 9.25 × 104 0.91
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Fig. 4. Cross variography of water quality parameters to assess cross-correlation structure.

Table 4
Cross-validation statistics for kriging methods

Parameters Ordinary kriging Co-kriging Indicator kriging

ME MSE RMSE ME MSE RMSE ME MSE RMSE

EC 5.34 233.57 15.28 3.76 215.78 14.69 1.81 128.98 11.13
Ca 3.24 115.23 10.73 2.33 75.09 8.66 3.31 91.78 9.58
Mg 0.98 18.57 4.31 0.45 6.35 2.52 0.30 3.56 1.25
HARD 2.09 49.76 7.05 0.78 23.25 4.82 0.02 8.45 3.61
Na 4.90 52.45 7.24 1.45 28.91 5.38 0.44 15.38 3.92
SO4 8.35 56.37 7.51 4.09 23.84 4.88 1.06 5.72 2.39
TDS 0.78 112.05 10.58 0.05 40.46 6.36 0.01 13.23 3.08
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Fig. 5. Prediction maps of groundwater quality parameters in Pakistan: (a) electric conductivity EC, (b) calcium Ca, (c) magnesium Mg, 
(d) hardness, (e) sodium Na, (f) sulfate SO4, and total dissolved solids TDS (g).
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ordinary kriging and co-kriging. The co-kriging method has 
the lowest values of ME, MSE and RMSE, therefore it works 
well for the Ca parameter.

3.6. Spatial variability of water quality

The indicator kriging was used to produce prediction 
maps of water quality parameters (Fig. 5). The EC prediction 
map (Fig. 5a) shows that the values of EC concentration are 
higher towards the southern and southwestern parts of the 
study area. The higher values of EC indicate that the water 
salinity is higher than the permissible limits which make it 
unsuitable for drinking purposes. The prediction map of Ca 
shows that it exceeds the permissible limit in the southwest-
ern part of the study area (Fig. 5b). The increased concen-
tration of Ca in drinking water may cause cancer [38]. The 
prediction map of Mg and hardness show higher concentra-
tion that exceeds the WHO permissible limits in the southern 
part of the study area (Figs. 5c and d). The higher concen-
tration of hardness, Ca, and Mg in drinking water impacts 
human health and may result in laxative effects and cancer 
[39]. Na concentration is higher in the southeast region of 
the study area (Fig. 5e). The SO4 concentration map high-
lights two regions of higher values that exceed the WHO 
permissible limits (Fig. 5f). Dehydration is a common symp-
tom of consuming water with a higher concentration of SO4. 
The TDS concentration is higher in the eastern and south-
ern regions of the study area as shown in Fig. 5g.

The general direction of groundwater flow in Pakistan 
is from east to west. The concentration maps of EC, Ca, Mg, 
HARD, Na, SO4, and TDS groundwater quality parameters 
demonstrated that the quality of groundwater decreases 
from east to west which coincides with the general ground-
water flow direction. Statistical analyses of the measured 
water quality parameters revealed that only 113 (31%) out 
of 366 water wells are suitable for drinking. 253 (69%) out 
of 366 water wells are unsuitable for drinking purposes. 
It is also indicated that 65% of water wells in Punjab, 47% 
in KPK, and 81% in Sindh and Baluchistan were unsafe 
for drinking purposes. Groundwater contamination most 
probably related to a rapid increase in population and 
industrialization. More research is needed to determine the 
point and non-point contamination sources.

4. Conclusion

This study investigated the spatial distribution of 
groundwater quality parameters in the major cities of 
Pakistan. The PCA and CA indicated that seven parameters 
including EC, Ca, Mg, HARD, Na, SO4, and TDS of the mea-
sured water quality parameters were higher signaling to an 
alarming situation. The concentration of the seven water 
quality parameters was found exceeding the WHO permis-
sible limits of safe drinking water. The non-parametric krig-
ing techniques ordinary kriging, co-kriging, and Indicator 
kriging were used for mapping the spatial variability of 
groundwater quality parameters. Cross-validation statistics 
ME, MSE and RMSE demonstrated that the Indicator 
kriging is more suitable for mapping groundwater qual-
ity parameters than both ordinary kriging and co-kriging 
methods. Concentration maps of EC, Ca, Mg, HARD, Na, 

SO4, and TDS indicated that the quality of drinking water 
decreases from east to west which coincides with the gen-
eral direction of groundwater flow in Pakistan. Statistical 
analyses revealed that only 113 water wells (about 31%) out 
of 366 water wells are suitable for drinking and human con-
sumption use. Yet, 253 (about 69%) of the tested water wells 
are unsafe for drinking. Deterioration of groundwater qual-
ity is most probably related to the rapid increase in pop-
ulation and industrialization. More research is required to 
determine the point and non-point contamination sources 
and to minimize the discharge of contaminants into the 
water resources. Simultaneously, more purification and 
infiltration processes should be applied to keep the water 
quality parameters within the WHO permissible limits of 
drinking water.
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