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a b s t r a c t
Certain aspects of the dynamics of wastewater treatment plants appear to be chaotic, which 
makes modeling of the process of wastewater treatment plants extremely difficult. An appropriate 
model is key for the optimal operation of the plant. Conventional prediction techniques are not 
good enough to produce the desired results and determination of the suitable structure of using 
either fuzzy, artificial neural network or adaptive neuro-fuzzy interface system becomes cum-
bersome. This article proposed the application of advanced machine learning methodologies, for 
example, extreme learning machine (ELM), support vector machine (SVM) for modeling the Bunus 
regional sewage treatment plant. These advanced machine learning methods were also compared 
with conventional autoregressive integrated moving average (ARIMA). Observed data from the 
Bunus regional wastewater treatment plant was used for the modeling. The simulation results indi-
cated that the ELM model performed better than the SVM and ARIMA models with a decrease in 
mean absolute percentage error by 19% and 29% than SVM and ARIMA models respectively. As the 
choice of input parameters often affects the modeling performance different combinations of input 
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1. Introduction

Biological oxygen demand (BOD) is one of the key 
parameters for determining the size and efficiency of waste-
water treatment plants (WWTP) [1]. BOD is the amount of 
oxygen needed for the degradation of organic matter present 
in wastewater. BOD serves as an indicator of the clarifica-
tion of water required before it is disposed into the receiv-
ing body [2]. The process of BOD oxidation is relatively 
slow and time-consuming over the production and analysis. 
The standard period of BOD is 5 d, in which about 60%–70% 
oxidation happens, while within ~95%–99% oxidation is 
attained in 20 d [3].

Demand for qualitative public health and environmen-
tal concerns have motivated research communities and 
practitioners to focus their attention on WWTP. Effective 
treatment of wastewater facilitates effective environmen-
tal management/protection process and eliminates major 
threats to public health [4]. BOD simulation is quite crucial 
in order to determine the approximate quantity of oxygen 
needed for the biological stabilization of organic matter pres-
ent in the wastewater. Similarly, BOD serves as the indicator 
for evaluating the size and efficiency of WWTP, hence its 
prediction become indispensable. This can be achieved with 
the application of an appropriate forecasting tool. A good 
prediction tool/method leads to higher efficiency, which 
in turn reduces energy consumption and cuts operational/
maintenance cost significantly, which improves the reliabil-
ity and performance of the plant. Despite modeling of other 
wastewater quality indicators are paramount but several 
studies indicated that BOD and chemical oxygen demand 
(COD) is one of the most important wastewater quality indi-
cators which determine the performance of the plant [5–12].

However, developing an accurate model for wastewater 
treatment plants can be extremely difficult due to the cha-
otic, dynamic nature of the wastewater treatment process. 
Different new forecasting strategies such as an artificial 
neural network (ANN), genetic algorithm, and fuzzy logic 
have been used for modeling the industrial WWTPs in 
Taiwan [13]. These advanced methods have helped to plan 
the control strategy in the successful management of the 
WWTP. Maleki et al. [14] predicted the influent parameters 
in WWTP using an autoregressive integrated moving aver-
age (ARIMA) and neural network auto-regression (NNAR) 
models. Although the ARIMA model showed acceptable 
performance, the results demonstrated that NNAR exhib-
ited better performance. Similarly, the application of ANN 
and multiple linear regression (MLR) for the prediction 
of COD in New Nicosia WWTP using different influent 
parameters have been studied in Abba and Elkiran [15]. 
The results indicated the superiority of ANN over MLR in 
both the training and testing phases. The performance of 
ANN in prediction is found better than MLR in different 
fields also Sharma et al. [16]. In Verma et al. [17] the ability 

of five different machine learning approaches, including 
multilayer perceptron (MLP), K-nearest neighbor, support 
vector machine (SVM), random forest, and multivariate 
adaptive regression splines is employed to estimate the total 
suspended solids (TSS) in a WWTP using different input 
parameters. The results showed better performance of MLP 
than other models. Also, in Hamed et al. [18] ANN model 
is developed to predict BOD and TSS values measured at 
different places within a treatment plant. The results indi-
cated that ANN emerged as a reliable model for predicting 
the performance of the treatment plant. In Civelekoglu et al. 
[8] application of ANN and adaptive neuro-fuzzy interface 
system (ANFIS) models to simulate the COD in WWTP has 
been studied. The ANFIS model was found more reliable 
for the estimation of plant performance. In other studies, 
ANN [19,20], and ANFIS [5,21] were used to develop mod-
eling WWTP; however, most of these strategies have some 
limitations such as the determination of optimum model 
structure and the requirement for design expertise.

A new and emerging black-box algorithm for single 
hidden layer feedforward networks (SLFNs) is the extreme 
learning machine (ELM) model, which was proposed in 
Huang et al. [22,23] to overcome the disadvantages of 
the traditional feed-forward backpropagation ANN (i.e., 
over-fitting, slow learning speed, and local minima). ELM 
has been widely adopted for the classification of municipal 
water samples [24], real-time BOD estimation [25], predic-
tion of coagulant dosing [26]. In a recent study [27] ELM 
was found to be better than SVM to monitor water quality in 
the water treatment plants. Although few studies in the field 
of WWTP have made comparisons between ELM, SVM, 
and traditional ARIMA models, to the best of the authors’ 
knowledge, no such study has been conducted at the Bunus 
regional sewage treatment plant (BRSTP). Therefore, the 
main aim of this study is to develop and compare the poten-
tial of a new data-driven approach, that is, ELM, and to 
compare it with the SVM and traditional ARIMA technique 
in predicting the effluent BODeff of BRSTP. The ELM is a new 
learning method so, to assess its performance it is compared 
with the widely adopted traditional ARIMA model and 
advanced SVM method. ARIMA and SVM represent two of 
the highly adopted learning methods in which ARIMA uses 
autoregressive properties for optimization of the model 
while SVM uses structural risk minimization (SRM) to find 
the global optima. Studies indicate that different machine 
learning methods are much better than ARIMA and the 
SVM method is found better than other machine learning 
methods in optimization and forecasting [28,29].

In hydro-environmental modeling demand for qualita-
tive public health and environmental concerns have moti-
vated research communities and practitioners to focus 
their attention on modeling wastewater treatment plants. 
Effective treatment of wastewater facilitates the effective 

variables were selected. It was observed that influent biological oxygen demand, chemical oxygen 
demand, suspended solids, ammonium iron (NH4) were able to model the process better than other 
input parameter combinations.

Keywords:  Black-box models; Biochemical oxygen demand; Extreme learning machine; Wastewater 
treatment plant
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environmental management/protection process and elim-
inates major threats to public health [4]. There are numer-
ous challenges related to wastewater modeling that water 
resources engineers/researchers are facing. The prime 
purpose of the proposed models is to provide a consistent 
prediction using several models that may not be achievable 
due to the dynamic nature and non-stationarity of observed 
data. In addition, many existing systems are poorly docu-
mented, and modeling the system can provide a concise way 
to capture the process of the existing system. This informa-
tion can then be used to facilitate maintaining the system 
or to assess the system with the goal of improving it by the 
decision-makers.

2. Methodology

2.1. Extreme learning machine

As an emerging black-box data-driven algorithm, the 
ELM comprises a SLFNs [22]. ELM was found to have 
several advantages over the traditional neural network [30]. 
For more detailed information on ELM, refer to [31,32].

The ELM structure is formed of a single hidden-layer 
feedforward neural network where the output weight matrix 
β is analytically characterized and the input weight matrix 
W is randomly selected. For a dataset with N arbitrary 
distinct samples (xi, ti) where xi = [xi1, xi2, …, xin]T ∈ Rn and 
ti = [ti1, ti2, …, tin]T ∈ Rm, the ELM structure is formulated as:

y g x g w x b j nj
i

N

i i i
i

N

i i i j i= ( ) = +( ) = …
= =
∑ ∑

1 1

1 2β β , ,  (1)

where N� , gi(xi), wi = [wi1, wi2, …, win]T, βii = [βii1, βii2, …, βiin]T  
and bi are hidden nodes, activation function, the weight vec-
tor connecting the input nodes to the ith hidden node, the 
weight vector connecting the output nodes with the ith hid-
den node and the ith hidden node threshold, respectively. 
The structure of the ELM network used in this study is pre-
sented in Fig. 1a.

2.2. Support vector machine

SVM [33] is another new artificial intelligence-based 
model comprised of both the classification and regression 
marching learning concepts. As a data-driven model, SVM 
has a promising ability to handle both classification and pre-
diction problems. The SVM implements SRM which mini-
mizes an upper bound to the generalization error instead of 
minimizing the training error. Based on this principle, the 
SVM achieves an optimum network structure. In addition, 
SVM is equivalent to solving a linear constrained quadratic 
programming problem so that the solution of the SVM is 
always unique and globally optimal [34]. The radial basis 
function kernel was applied in this study due to its robust-
ness to simulate complex nonlinear functions [35]. In SVM, 
a linear regression was first fitted to the data and then 
the outputs go through a non-linear kernel to follow the 
non-linear pattern of the data (Fig. 1b). Given a set of train-
ing data {(xi, di)}i

N (xi is the input vector, di is the actual value 
and N is the total number of data patterns), the general SVM 
function is given as:

y f x w x bi= = +( ) ( )φ  (2)

where φ(xi) indicates feature spaces, non-linearly mapped 
from input vector x [33].

2.3. Auto-regressive integrated moving average

The ARIMA model is one of the most widely used clas-
sical models for time series forecasting and provides a com-
patible approach to the problems of forecasting [36,37]. The 
pre-assumption of linear patterns is one of the disadvantages 
of the ARIMA time series. Ensuring the stationarity of the 
data is essential in any type of ARIMA modeling. The three 
main stages of the ARIMA model include parameter esti-
mation, checking based on diagnostic processes, and model 
identification [38].

2.4. Model development and performance indicators

In model development, various steps are carried out, 
including data collection and pre-processing model design, 
model training, testing, and model execution. Prior to model 
development in any data-driven approach, the input selec-
tion is quite significant in different models (ELM, SVM, and 
ARIMA). For the purpose of this research, the data obtained 
from the BRSTP was randomly divided into 75% training and 
25% testing. Although different methods are available for 
input selection, two methods were considered in this study 
(i) Pearson and Spearman correlation analysis to determine 
the strength and relations between inputs and outputs and 
(ii) auto-correlation function (ACF) and the partial autocor-
relation function (PACF) (Fig. 2). More detail about ACF and 
PACF is provided in Appendix-A.

Subsequently, a set of three different models were derived 
on the basis of significant input variables. The normalization 
was carried out before the model training, as follows.

y x x
x x

= + ×
−
−



















0 5 0 5. .

max min

 (3)

Here, y, x, and x� are normalized, measured, and mean of 
the measured data respectively. xmax and xmin represent the 
maximum and minimum value of the observed data.

Three different models were formulated based on chosen 
different sets of input parameters as given below:

M BOD BOD CODeff1 = = ( )f inf inf,  (4)

M BOD BOD COD SSeff2 = = ( )f inf inf inf,  (5)

M BOD BOD COD SS NHeff3 4= = ( )f inf inf inf inf, , ,  (6)

where SS, subscripts ‘eff’ and ‘inf’ represents suspended 
solids, effluent and influent, respectively.

However, it is essential to briefly explain the other 
influents parameter for example; COD is one of the most 
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important parameters of water quality assessment employed 
for estimating the organic pollution of water. The COD is 
widely used as a measure of the susceptibility to oxidation 
of the organic and inorganic materials present in the water 
bodies. NH4–N is an important parameter for water quality 
assessment; generally, the presence of nitrogen in wastewa-
ter indicates the presence of organic matter in it. Nitrogen 
is essential to the growth of Protista and plants, and such is 
known as nutrient or biostimulant. Sewage normally con-
tained 99.9% of water and 0.1% of solids. Measuring sus-
pended solids (SS) in water is used for control of various 
treatment processes and for the examination of wastewater 
quality. The level of suspended solids (or total suspended 
solids) in water and wastewater affects the quality of the 
water and how it can be used.

The parameters of the ARIMA model were optimized 
using different trial-and-error procedures. The model was 
fitted to the training data and the trained model was sub-
sequently used to find the testing error using values of the 
testing data [37,39]. The parameters of the SVM model and 
the number of hidden neurons in ELM were also optimized 

to obtain the best architecture of SVM and ELM models. 
The optimal ELM model was selected following the pro-
cess of Yaseen et al. [33,34]. The optimum SVM model was 
obtained by adopting different combinations of kernel 
function (γ) and the regularization constant parameter (C).

The performance of the models can be assessed through 
different statistical measures, that is, the Nash–Sutcliffe coef-
ficient, root mean square error (RMSE), mean absolute error 
(MAE), mean absolute percentage error (MAPE) [40–43]. The 
predicting performance of the ELM, SVM, and ARIMA models, 
was evaluated using RMSE, MAPE, and mean squared error 
(MSE) in this study. RMSE, MAPE, and MSE are defined as:

RMSE
BOD BODobs, pre,

=
−( )

=
∑ i i
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2

1  (7)
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Fig. 1. (a) Topological structure of the extreme learning machine network and (b) conceptual architecture of the SVM algorithm.

Fig. 2. Autocorrelation and partial autocorrelation functions of BODeff.
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MSE BOD BODobs pre= −( )
=
∑

1
1

2

N i

N

i i, ,  (9)

where N, BODobs,i, and BODpre,i are sample size, observed, and 
predicted values, respectively.

2.5. Bunus regional sewage treatment plant

The plant is located in the northeast of Kuala Lumpur, 
Malaysia, and has a capacity of 87,000 m3/d. The BRSTP is the 
largest and modern treatment plant of Kula Lumpur which 
covers the catchment area of 70km2 which includes three 
major towns, for example, Ampang Ulu Klang, Gombak, 
and Bunus. The BRSTP is based on the process of step-feed 
activated sludge process and uses different parameters, for 
example, BOD, COD, suspended solids, and nitrogen.

This plan aims to control environmental pollution by 
improving the quality of effluents. The raw sewage passes 
into a primary settler which allows the solids to settle at the 
bottom of the clarifier by the action of gravitational sedi-
mentation [43]. Fig. 3 shows the influents and effluents 
process. To have a perfect understanding of wastewater 
management, it is necessary to understand the hydro-en-
vironmental processes that govern the wastewater pattern 
and its phenomenon. The past few decades have witnessed 
several studies on the wastewater phenomenon as a result 
of the interest in studying both regional and global patterns 
of hydro environmental changes. The wastewater pattern 
is modeled using two primary approaches: (i) mathemati-
cal or physically-based models such as models that deploy 
partial differential equations, and (ii) artificial intelligence 
(AI) models such as soft computing methods [13]. However, 
several studies need to be done and especially on the waste-
water variables to select from the physical or artificial 
intelligence (AI) based models, the physical models still 
displayed various weaknesses in contrast, while AI based 
models which are associated with nonlinear optimization 
algorithm emerged to replace linear mathematical optimi-
zation process.

3. Results and discussion

3.1. Modeling performance of ELM, SVM and ARIMA model

Both descriptive statistical analysis and correlation 
matrix were used to explore the type, degree, and extent 

of the relationship between influent and effluent parame-
ters. Spearman correlation coefficient (R) was calculated to 
measure the degree of the linear relationship between two 
variables. The significance of R is checked at a 5% signifi-
cance level (Appendix-B). A negative R-value indicates an 
inverse relationship between two variables while vice-versa 
for positive value [5]. Hence, a weak R-value (close to zero) 
depicts that the application of conventional techniques is 
not useful in modeling such complex interactions and there 
is a great need to introduce more robust tools. As defined 
in Eqs. (4)–(6), three different models considering differ-
ent input combinations were trained using ELM, SVM, and 
ARIMA models in order to forecast the effluent BODeff.

Table 1 shows that M3, having four input variables 
(BODinf, CODinf, SSinf, NH4inf), produces the best result. 
A closer assessment of the outcome revealed that M3 has 
the lowest RMSE, MSE, and MAPE in both training and test-
ing phases (Table 1) among the 3 models (M1, M2, and M3). 
The result also indicated that the ELM model % error was 
reduced by ~5% on the addition of input variables in the 
testing phase. No clear trend in the performance of SVM 
and ARIMA was found by increasing the number of input 
variables. It can also be noted that the values of RMSE, MSE, 
and MAPE are lowest for the ELM model which indicates 
better performance of ELM than the other two models. 
It can be seen that the performance of the models consid-
ering the ELM model can be related to M3 > M2 > M1. It 
can be noted that M1 with two input combinations (BODinf, 
CODinf) has the best performance indicator considering the 
SVM model. The values of RMSE, MSE, and MAPE were 
found lowest for the M1 model than M2 and M3. The results 
also indicated that the M1 model exhibits 4% and 1% lesser 
values of MAPE in the testing phase in comparison to M2 
and M3. This indicates that MAPE is the lowest in the M1 
model. A conventional linear model like ARIMA is usually 
employed as the reference method for evaluating another 
non-linear black-box model. Overall, it can be seen from 
Table 1 that M1 is the best model among the three different 
models, which can be justified by the values of the perfor-
mance indicators (RMSE, MSE, and MAPE). The MAPE in 
the testing phase for the M1 model is lower than ~2% and 
4% from M2 and M3. The hierarchical performance of the 
ARIMA models is M1 > M2 > M3.

The predicted value of BODeff using different models is 
also compared with observed BODeff and shown as box plots 
in Fig. 4, which demonstrates the similarity of predicted 

Fig. 3. Schematic diagram of Bunus regional sewage treatment plant layout.
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output with the observed values using different models. 
It can be observed that the spread of predicted values using 
SVM and ARIMA models is almost similar irrespective of 
the number of input parameters. However, considering 
ELM, the spread is getting similar to the observed output by 
increasing the number of inputs. The median of the model 
outputs is more or less similar to the observed data irrespec-
tive of the model used and the number of input parameters. 
Overall, the ELM (M3) ranked the best model among all the 
models.

The testing results also indicate that the MAPE using 
ELM reduced by 19% and 29% than SVM and ARIMA 
models, respectively. Generally, the non-linear black-box 
models (ELM and SVM) are considered to be superior to 
conventional time-series (ARIMA) models in terms of com-
putational run-time and modeling efficiency, which is due 
to their promising ability to model highly complex and 
non-linear processes.

3.2. Modeling speed of ELM, SVM and ARIMA models

Apart from modeling performance, computational time 
is also an important aspect to choose a better model. The 
computational time taken by different modeling techniques 
was observed. The computational time is taken by ELM, 

SVM, and ARIMA models to run their respective best com-
binations of input–output parameters, that is, M1, M2, and 
M3 are indicated in Table 2. The best performing combina-
tion from M1, M2, and M3 for each modeling technique is 
also presented in Table 2. Both SVM and ARIMA showed 
the performance of the M1 model better than other models, 
while ELM showed an input parameter combination of the 
M3 model better than other combinations. It can be observed 
that the ELM M3 model showed the least RMSE, MAE, and 
MAPE than the M1 model of SVM and ARIMA. The ELM 
has also shown fast learning speed and lowest computa-
tional run time than other models. These results are also in 
close agreement with similar previous studies [30,32].

Another way to visualize the performance of different 
models is to compare the time series plots of observed and 
predicted values. The time series plots of predicted BODeff 
using best among M1, M2, and M3 input combination for 
each model with observed BODeff are shown in Fig. 5. It can 
be observed that the ELM (M3) model is satisfactorily able 
to predict low as well as high values of BODeff. The SVM 
(M1) model was able to predict only a few of the data sat-
isfactorily. Most of the predicted values were found to be 
lying between 0.12 and 0.28 which indicates that it was not 
able to model the variability. The ARIMA (M1) model per-
formance was the poorest among all three methods. Careful 

Table 1
Performance indicators of ELM, SVM, and ARIMA models

Techniques Models Training Testing

RMSE MSE MAPE RMSE MSE MAPE

M1 0.2194 0.0481 0.0724 0.0766 0.0059 0.4825
ELM M2 0.1738 0.0302 0.0712 0.0880 0.0077 0.4745

M3 0.1099 0.0121 0.0711 0.0712 0.0051 0.4276
M1 0.2287 0.0503 2.4999 0.0892 0.0080 0.6180

SVM M2 0.2277 0.0519 4.9408 0.0953 0.0091 0.6558
M3 0.2265 0.0523 5.1062 0.1006 0.0101 0.6280
M1 0.2271 0.0516 0.0933 0.0936 0.0094 0.7219

ARIMA M2 0.2315 0.0536 0.1065 0.0738 0.0055 0.7244
M3 0.2268 0.0514 0.0968 0.0752 0.0056 0.7451

Fig. 4. Box plot of the observed BODeff compared with the forecasted models of ELM, SVM, and ARIMA.
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observation shows that the best sets of model inputs were 
not the same for each of the employed prediction tech-
niques, signifying that the individual model type responds 
in a different way to different input parameters.

Fig. 6 depicts the bar plot of the performance indicators 
for the best model. It was noted that the smaller the values 
of RMSE, MSE, and MAPE, the more accurate the forecast-
ing results [19]. Hence, the nonlinear black-box models 

Table 2
Comparison of the best model and the running time for ELM, SVM, and ARIMA

Techniques Models Training Testing

Run-timeRMSE MSE MAPE RMSE MSE MAPE

ELM M3 0.1099 0.0121 0.0711 0.0712 0.0051 0.4276 5.26
SVM M1 0.2287 0.0503 2.4999 0.0892 0.0080 0.6180 9.40
ARIMA M1 0.2271 0.0516 0.0933 0.0936 0.094 0.7219 19.13

 

 

 

(a) 

(c) 

(b) 

Fig. 5. Time series of observed vs. predicted BODeff considering models using (a) ELM, (b) SVM, and (c) ARIMA methods.
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demonstrated high forecasting ability in Bunus WWTPs, and 
can, therefore, be considered as a valuable and reliable fore-
casting tool for the WWTPs. The error outcomes could be jus-
tified by considering the studies conducted by Guo et al. [44].

A comparison of the results is also presented and exam-
ined using a Taylor two dimensional diagram [45,46] and 
provided in Fig. 7. The Taylor plot is used to evaluate the 
performance of three different models using correlation and 

 

  
 

(a) (b) (c)

Fig. 6. Bar plots of the performance of the best models for ELM, SVM, and ARIMA methods (a) RMSE, (b) MSE, and (c) MAPE.

 

 

(a) (b) 

(c) 

Fig. 7. Taylor diagram for (a) ELM, (b) SVM, and (c) ARIMA models.
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standard deviation; in other words, the models (ELM, SVM, 
and ARIMA) can be visualized in terms of predictive skills 
and how close the predicted values from observed BODeff. 
It can be seen that the ELM (M3) model performed better 
than all other models with a correlation coefficient greater 
than 0.8. The standard deviation of predicted BODeff is ~0.2 
which is similar to observed. It was also shown in Yaseen 
et al. [31] that ELM ranked highest in performance than 
other models, for example, M5 tree, support vector regres-
sion, and multivariate adaptive regression splines models. 
It can also be noted that the M3 model used in SVM for the 
prediction of BODeff is having better correlation, similar 
spread with observed BODeff than M1 and M2 models. So, 
it can be said that, for the prediction of BODeff in BRSTP, 
input parameters used in M1 and M2 are not sufficient to 
predict BODeff effectively, so input parameters used in the 
M3 model could be a better choice.

For data intelligence algorithms such as ELM and SVM, 
the optimization process is only employed when it is nec-
essary. In the case of Bunus sewage treatment plant, both 
the model and parameters employed require no optimiza-
tion techniques owing to the consideration of the previous 
studies conducted in similar case studies using a math-
ematical optimization approach. It is stated that the ELM 
was recently developed as a new learning approach whose 
major advantage is in its ability to map the internal features 
without the need to iteratively tune the parameters of the 
hidden neuron as required in a traditional ANN model [23]. 
The input and hidden neuron weights are computed ran-
domly in the ELM from several pre-assigned neurons with-
out having to pass through all the neurons in the model 
[22]. Furthermore, the generalization capability of the ELM 
is acceptable, and it requires less computation time [13]. 
Hence these models can still be feasible in various modeling 
processes without been subjected to optimization processes.

4. Conclusion

Recent studies reveal that the Black-box models could 
be effective tools for forecasting complex and nonlin-
ear interactions. The primary goal of this research was to 
explore the applicability of ELM algorithms for predicting 
effluent BOD in the BRSTP. In this study, ELM, SVM, and 
ARIMA models were used for modeling the daily effluent 
BOD in BRSTP. The effectiveness of ELM was examined and 
compared with SVM and ARIMA models and the results 
were evaluated in terms of widely-used performance indi-
ces. It was found that the non-linear black-box models 
(ELM and SVM) can potentially improve the modeling of 
BODeff in comparison to the linear models, for example, 
ARIMA. The combination of input parameters used in the 
M3 model was found the best choice among all three mod-
els. The ELM (M3) model showed a reduction in MAPE by 
19% and 29% than SVM and ARIMA models, respectively, 
which is a significant improvement in BODeff modeling. It 
was also found that the addition of SSinf was not able to sig-
nificantly improve the model performance. The ELM can 
be a better choice to predict BODeff of Bunus WWTP than 
other widely adopted methods. Other advanced machine 
learning methods, for example, relevance vector machines, 
random forest, gradient boosting, etc can also be tested to 
model the process of WWTPs. The quality and quantity 

of the observed data highly affect the performance of the 
developed models, so it expected to get better results with 
larger datasets also.
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Appendix A

Auto-correlation and partial auto-correlation function 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.359 0.359 18.411 0.000
2 0.335 0.237 34.611 0.000
3 0.282 0.128 46.132 0.000
4 0.409 0.281 70.618 0.000
5 0.292 0.061 83.157 0.000
6 0.245 0.008 92.079 0.000
7 0.234 0.038 100.28 0.000
8 0.250 0.030 109.68 0.000
9 0.246 0.054 118.85 0.000

10 0.114 -0.107 120.84 0.000
11 0.210 0.081 127.61 0.000
12 0.113 -0.070 129.60 0.000
13 0.239 0.123 138.55 0.000
14 0.109 -0.024 140.43 0.000
15 0.098 -0.068 141.96 0.000
16 0.109 0.038 143.85 0.000
17 0.160 0.031 147.97 0.000
18 0.117 0.016 150.19 0.000
19 0.036 -0.070 150.40 0.000
20 0.079 0.001 151.43 0.000
21 0.174 0.143 156.50 0.000
22 0.259 0.172 167.81 0.000
23 0.063 -0.061 168.49 0.000
24 0.097 -0.045 170.10 0.000
25 0.056 -0.092 170.64 0.000
26 0.111 -0.047 172.77 0.000
27 0.101 0.069 174.58 0.000
28 0.028 -0.068 174.72 0.000
29 0.041 -0.032 175.01 0.000
30 0.060 -0.005 175.66 0.000
31 0.049 -0.002 176.09 0.000
32 -0.069 -0.086 176.96 0.000
33 0.018 0.017 177.02 0.000
34 -0.004 -0.011 177.02 0.000
35 0.047 0.000 177.45 0.000
36 -0.123 -0.096 180.35 0.000
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Appendix B

Pearson and Spearman correlation and descriptive statistical analysis

Parameters BODinf CODinf SSinf NH4
–Ninf BODeff Mean Standard 

deviation
Minimum Maximum

BODinf 1.0000 147.1571 29.5747 86.0000 257.0000
CODinf 0.6046 1.0000 317.1071 63.0775 165.0000 566.0000
SSinf 0.4711 0.5303 1.0000 140.1143 36.2140 35.0000 264.0000
NH4

–Ninf 0.1573 0.0908 0.1250 1.0000 24.1357 3.3505 14.0000 36.0000
BODeff 0.5157 0.4071 0.1705 –0.0869 1.0000 1.8286 0.8218 1.0000 5.0000
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