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a b s t r a c t
The study on removal of fluoride from water is performed by using two anion exchangers and 
two modified cation exchangers by varying contact time, resin dosage, pH, and initial concen-
tration of fluoride ions. Maximum fluoride removal is possible in the pH range of 4.0–10.0 and 
removal efficiency reaches maximum, within 60 min for anion exchangers and 120 min for cation 
exchangers. Among Langmuir and Freundlich isotherms, adsorption data fit well in Freundlich 
isotherm. The kinetic study suggests adsorption process follows pseudo-second-order reaction 
kinetics. Among two anion exchangers used for the removal of fluoride Tulsion A-10X (MP) has 
better fluoride removal efficiency than Amberlyst A-21(MP). However, in the case of modified 
cation exchangers, Al+3 forms of resins have better fluoride removal efficiency than Fe+3 forms. It 
clearly indicates that modified resins can be useful for the removal of fluoride. Desorption study is 
also carried out on all the resins using 0.1 N NaOH and 0.1 N HCl.
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1. Introduction

Fluoride is useful to the human health if its concen-
tration in drinking water is within 1–1.5 mg/L [1] to pre-
vent tooth decay. If the concentration exceeds more than 
1.5 mg/L, it may lead to harmful effects like dental fluoro-
sis, skeletal fluorosis, headache, neurological damage, and 
bone cancer [2]. Fluoride gets added to water naturally 
through plutonic and volcanic activities and also due to use 
of fluoride compounds in fertilizer, plastic, glass, and textile 
dyeing industries [3].

Various techniques have been employed by research-
ers to reduce fluoride concentration from aqueous medium 
such as coagulation techniques where in alum sludge [4] 
and lime [5] are used as coagulants. Fluoride has been 

removed by using adsorption processes; by adopting differ-
ent adsorbents like activated alumina or modified activated 
alumina [6–8], activated carbon [9,10], bone charcoal [11], 
chitosan-iron complex [12] and Kanuma mud [13]. Nano 
adsorbents like nano sized alumina and zirconia modified 
alumina [14], Fe–Ti oxide [15], γ-Fe2O3 nanoparticles [16], 
polypyrrole/Fe3O4 magnetic nanocomposites [17] are also 
used for the fluoride removal in recent years. In addition 
to this nanofiltration membranes [18], low pressure reverse 
osmosis membranes [19], and electrodialysis membrane tech-
nologies [20,21] are also employed for fluoride removal.

Ion exchange resins are the most promising materials 
for removing fluoride from water. Commercially available 
anion exchange resins, chelating resins and modified chelat-
ing resins [22–28], metal ions incorporated cation, and anion 
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exchange resins [29–34] are effectively used for fluoride 
removal from the water.

In this study two anion exchangers in Cl– form and two 
cation exchangers converted into Al+3 and Fe+3 forms are 
used to evaluate their fluoride removal efficiency. The com-
parison of these resins are made based on their defluorida-
tion efficiency by varying the parameters like contact time, 
resin dosage, pH, and initial concentration of fluoride ions 
and the data is studied applying equilibrium isotherms and 
kinetic models.

2. Experimental

2.1. Materials and methods

The weak base anion exchangers with polyacrylic and 
polystyrene matrix with polyamine and tertiary amine 
group are used. Also, strong acid cation exchangers with 
polystyrene matrix having sulfonic acid group are used. The 
resins are supplied by Thermax Limited (Pune, India) and 
Himedia Laboratories Pvt., Ltd., (Mumbai, India). Details of 
resins used for the study are presented in Table 1.

The analytical grade chemical reagents such as KF, 
NaOH, HCl, Al(NO3)3, Fe(NO3)3, Tisab III are used. The 
stock solution of fluoride is prepared by dissolving KF in 
double-distilled water to get concentration 1,000 mg/L. The 
stock solution is diluted to get required initial concentration.

Weak base anion exchangers in Cl– form are used 
directly for fluoride adsorption studies. The strong acid cat-
ion exchangers with Na+ form are converted into Fe+3 and 
Al+3 form by treating with 5% (w/v) Al(NO3)3 or Fe(NO3)3 
solutions [30] and are used for the removal of fluoride. 
The abbreviation of resins is listed in Table 2.

2.3. Methods

2.3.1. Adsorption studies by batch method

The adsorption study of fluoride in aqueous medium 
using resins is carried out by batch method using Toshiba 
make thermostatic mechanical shaker. The experiments are 
performed by varying time, pH, resin dosage, and fluoride 
concentration to optimize the conditions. The concentra-
tions of fluoride ions in the solution after the adsorption is 
measured using Thermo Scientific Orion Dual (USA) star 

ion selective electrode meter with 9409BN fluoride half-cell 
electrode in combination with 900100 single junction refer-
ence electrode.

For kinetic study, known concentration of fluoride solu-
tion of 50 cm3 is taken in 100 cm3 volumetric flask with a 
known quantity of resin and flasks are kept for agitation in 
the mechanical shaker at 303 K. The concentration of fluo-
ride in the solution is checked after specific time intervals. 
The amount of fluoride adsorbed on resin is calculated from 
initial concentration and final concentrations after adsorp-
tion in the solution.

Equilibrium study is carried out by taking various 
known concentrations of fluoride solution (2–14 mg/L) 
in different flasks with fixed quantity of resin. The flasks 
are kept for agitation until the equilibrium is attained. 
The fluoride adsorption capacity (qe), is found out  
from Eq. (1):

q
V C C

me
e=

−{ }0  (1)

where C0 and Ce are the initial and equilibrium concentration 
of fluoride (mg/L), V is the volume of solution (L), and m is 
the weight of resin (g).

Distribution coefficient (Kd) at equilibrium is calculated 
using Eq. (2):

K
C
Cd
a

e

=  (2)

Table 1
Characteristics of resins

Resin Tulsion T-40 (gel) Tulsion T-42 (gel) Tulsion A-10X(MP) Amberlyst A-21(MP)

Matrix structure
Cross linked 
polystyrene

Cross linked 
polystyrene

Cross linked 
polyacrylic

Styrene 
divinylbenzene

Functional group Sulfonic acid Sulfonic acid Polyamine Tertiary amine
Ionic form Sodium Sodium Free base Free base
Particle size (mm) 0.3–1.2 0.3–1.2 0.3–1.2 0.49–0.69
Screen size (US mesh) 16–50 16–50 16–50 22–30
Maximum operating temperature (°C) 120–140 120–140 80 100
Total exchange capacity (m eq./mL) 1.8 2.0 2.5 1.3
Moisture content (%) ~50% 42–48 52–55 56–62

Table 2
Resin abbreviations

Name of the resin Abbreviation

Al+3 form of Tulsion T-40 (gel) TT-40-Al
Fe+3 form of Tulsion T-40 (gel) TT-40-Fe
Al+3 form of Tulsion T-42 (gel) TT-42-Al
Fe+3 form of Tulsion T-42 (gel) TT-42-Fe
Tulsion A-10X(MP) TUL-10
Amberlyst A-21(MP) AMB-21
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Fig. 1. Effect of contact time on removal of fluoride using resins.
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Fig. 2. Effect of resin dosage on the removal of fluoride using 
resins.

where Ca is the concentration of fluoride (mg/L) on the resin 
after the adsorption.

% Removal efficiency of fluoride (R%) is calculated using 
the Eq. (3):

%R
C
C
a= ×
0

100  (3)

2.3.2. Desorption studies

Desorption study is carried by taking 1 g of fluoride 
adsorbed resins in contact with 50 cm3 of 0.1 N NaOH and 
0.1 N HCl solution in flasks. The flasks are agitated in orbital 
shaker for 2 h and the solution is decanted and analyzed for 
the residual fluoride content. Desorption of the fluoride is 
calculated using Eq. (4):

% Desorption
 

100= ×
D
A
F

F

 (4)

where DF and AF are the amount of fluoride ion concentra-
tion desorbed in the solution and adsorbed on the resin in 
mg/L, respectively.

3. Result and discussion

3.1. Effect of the various parameters for fluoride removal

3.1.1. Effect of contact time

Fig. 1 shows fluoride removal by using resins with 
respect to contact time. The study is carried out by using 
0.2 g of resin with a 10 mg/L of fluoride ion concentration 
to understand a minimum time of contact needed to attain 
maximum removal efficiency. The adsorption increases 
rapidly in the beginning as the number of sites available 
for adsorption are more [35]. The maximum removal effi-
ciency is observed within 60 min for both anion exchang-
ers and within 120 min for Fe3+ and Al3+ form of cation  
exchangers.

3.1.2. Effect of resin dosage

Effect of resin dosage on the removal efficiency of flu-
oride is studied by varying the resin quantity ranging 
between 0.25 and 2.0 g and keeping the fluoride ion concen-
tration constant 10 mg/L. The removal efficiency enhanced 
with increase in resin dosage as represented in Fig. 2, 
because the number of available surface sites increased due 
to which the diffusion of fluoride on the resin for adsorption 
increased [36]. Beyond 1.5 g of resin quantity, the increase in 
the removal efficiency remained more or less same.

3.1.3. Influence of pH

pH effect is studied by varying the pH of fluoride solu-
tion in the range of 3–12 as pH is an important parameter 
for adsorption studies. The effect is studied by taking 0.2 g 
resin with 10 mg/L fluoride solution with different pH 
values at 303 K. The solution pH is adjusted by using HCl 

and NaOH solution. Fig. 3 represents the effect of pH on the 
removal efficiency of fluoride on the resins. The result indi-
cates that the resins can be used to remove fluoride in wide 
range of pH between 4 and 10. The decrease in removal effi-
ciency below pH 3 on the resins is may be due to formation 
of HF [37]. The decrease in removal efficiency above pH 10 in 
case of weak base resin is, as weak base resins get converted 
to base form which may show less affinity for fluoride ions 
and in case of strong base resins it may be due to formation 
of hydroxides of aluminum and iron.

3.1.4. Effect of fluoride ion concentration

The effect of initial concentration of fluoride is studied 
by varying the concentration of fluoride ions between 2 to 
14 mg/L by keeping resin quantity constant. As shown in 
Fig. 4, the effect of initial concentration of fluoride is neg-
ligible on both anion exchangers and cation exchangers 
in Al+3 form. However, in case of cation exchangers in Fe+3 
form, removal efficiency is less at lower concentrations of 
fluoride, as the numbers of available sites on resin are more 
than the ions in the solution. As the concentration increases 
the number of fluoride ions in the solution increase, how-
ever, the number of available sites on resin remain same 
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so the removal efficiency almost remains constant once the 
equilibrium concentration is reached [33].

3.2. Adsorption isotherms

Adsorption isotherms relate the interaction of adsorbate 
with adsorbent. Isotherms help to analyze the relationship 
between the concentration of adsorbate in the solution 
and on the adsorbent [38]. Langmuir and Freundlich iso-
therms are used to analyze the experimental data of fluo-
ride adsorption on the ion exchange resins. The adsorption 
isotherm parameters are listed in Table 3.

3.2.1. Langmuir adsorption isotherm

The Langmuir equation [39] may be written as:

C
q K Q

C
Q

e

e L L

e

L

= +
1
.

 (5)

where qe is the amount of fluoride adsorbed on the resin at 
equilibrium (mg/g), QL is the maximum adsorption capacity 
(mg/g), KL is a Langmuir constant which is an affinity term 
(L/mg), Ce is fluoride concentration at equilibrium (mg/L). 
KL and QL are calculated by plotting of Ce/qe vs. Ce and the 
data is represented in Table 3. R2 values are very small for all 
the resins which indicate that the data do not fit well in the 
Langmuir Isotherm model.

3.2.2. Freundlich adsorption isotherm

The Freundlich equation [40] is conventionally written as:

log log logq K
n

Ce F
F

e= +
1  (6)

where KF is Freundlich constant (mg/g) which indicates rel-
ative adsorption capacity and nF is the adsorption intensity. 
The constants are determined by the linear plot of logCe vs. 
logqe as shown in Fig. 5. The value of the correlation coeffi-
cient (R2) for all the resins is ≥0.99. The Freundlich isotherm 
gives a better fit to the data than the Langmuir isotherm for 
fluoride adsorption. As indicated in Table 3, the values of nF 
lie between 0.1 and 1 indicating a favorable adsorption.

Table 4 indicates comparative study of adsorption 
capacities of the ion exchangers used in the present work 
with the other ion exchangers used by different researchers. 
The adsorption capacities of resins studied are comparable 
with Indion FR 10 and Duolite ES 467 modified with Al+3 
and Duolite A 171 as represented in chart. However, adsorp-
tion capacity depends on resin type, resin matrix, resin fixed 
ion and modified form of resin.

3.3. Study of adsorption kinetics

Kinetic study of adsorption of fluoride on different resins 
is carried out by using 0.2 g of resin with 10 mg/L fluoride 
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Fig. 3. Effect of pH on removal of fluoride using resins.
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Table 3
Adsorption isotherms parameters for adsorption of Fluoride on different resins

Isotherm Model Isotherm 
Parameters

TT-40-Al TT-40-Fe TT-42-Al TT-42-Fe TUL-10 AMB-21

Langmuir

KL (L/mg) 0.03 –0.09 –0.19 –0.09 0.02 –0.02
QL (mg/g) 16.94 –0.24 –1.22 –0.20 13.36 –5.08
RL 0.98 1.65 1.27 1.70 0.97 1.06
R2 0.076 0.963 0.620 0.769 0.089 0.164

Freundlich
KF (mg/g) 0.49 0.02 0.29 0.02 0.28 0.13
nF 1.02 0.67 0.82 0.64 1.02 0.94
R2 0.997 0.990 0.983 0.993 0.995 0.993
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solution of 50 cm3. The fluoride ion concentration in the solu-
tion after specific interval of time is checked using Orion 
ISE meter connected to fluoride ion selective electrode. The 
obtained kinetic data is studied by using following four 
kinetic models. Table 5 represents the correlation coefficient 
R2 and rate constants.

3.3.1. Lagergren’s equation for first-order kinetics

The Lagergren’s equation for first-order kinetics [41] is:

log log
.

q q q
k t

e et−( ) = − 1

2 303
 (7)

where qt is the amount of fluoride adsorbed on the resin 
(mg/g) at time t (min), k1 is the Lagergren’s first-order rate 

constant (1/min). k1 and qe are calculated from the intercept 
and slope of the plot log(qe – qt) vs. t. The values are listed in 
Table 5 along with the R2 values.

The R2 values for the pseudo-first-order model are 
small for all the resins and the experimental qe values and 
calculated qe values by applying model are not very close 
which imply that the adsorption of fluoride on resins do not 
follow the pseudo-first-order kinetics.

3.3.2. Pseudo-second-order model

Pseudo-second-order model [42] is given as:

t
q k q

t
qt e e

= −
1 1

2
2  (8)

where k2 is pseudo-second-order constant (g/mg/min) and 
qe which are determined experimentally from the graph of 
t/qt vs. t as shown in Fig. 6 and are listed in Table 5 along 
with R2 values.

The pseudo-second-order model is relevant for adsorp-
tion of fluoride on resins as the data show high correlation 
coefficient (≥0.99) for all the resins and the experimental 
and theoretical qe values are in good agreement with each 
other. This suggests that the rate determining step may be 
chemisorption.

3.3.3. Ritchie’s-second-order kinetic model

The modified Ritchie’s-second-order kinetic model [43] 
is represented as:
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Fig. 5. Freundlich isotherm for the removal of fluoride.

Table 4
Comparative chart of adsorption capacities of different ion exchangers

Sl. no. Ion exchange resins Adsorption capacity (mg/g) Reference

1 Strong base anion exchanger in OH– form 13.7 [22]
2 Purolite A520E 2.0 [23]
3 Duolite A 171 0.60 [24]
4 Indion FR 10 1.31 [25]

Ceralite IRA 400 1.50
5 Cerium-loaded poly(hydroxamic acid) 9.45 [26]
6 Lanxess TP208 resin 1.30 [27]
8 Polyacrylamide Al(III) phosphate 2.14, [29]

Polyacrylamide Ce(IV) phosphate 2.29
Polyacrylamide Zr(IV) phosphate 2.17

9 A500P loaded with Zr 2.14 [30]
10 Amberlite 200CT modified with Al3+ 43.68 [31]
11 Indion FR 10 in modified with Al+3 0.50 [32]
12 Aluminum complexed Duolite ES467 0.40 [33]

13

TT-40-Al 0.45

Present work

TT-40-Fe 0.24
TT-42-Al 0.44
TT-42-Fe 0.22
TUL-10 0.42
AMB-21 0.37
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1 1 1
q k q t qt R e e

= −  (9)

where kR is the modified Ritchie’s-second-order (1/min). 
kR and qe are obtained from the graph of 1/qt vs. 1/qe. R2 
values are high and standardize deviation between the 
experimental and calculated values (%Δq) is less. Therefore, 
the fluoride adsorption on resin follows modified Ritchie’s-
second-order kinetic model and suggests that rate limiting 
step may be chemical adsorption.

3.3.4. Intraparticle diffusion model

The intraparticle diffusion model [44] is expressed as:

q k t at = +id
0 5.  (10)

where kid is measure of diffusion coefficient and a is intra-
particle diffusion constant, an indicative of thickness of the 
boundary layer. By plotting a graph of qt VS. t0.5, constants 
kid and a are calculated from the slope and the intercept. 
Fig. 7 represents the graph where the points are non-linear 
which indicates the lines do not pass through the origin. 

This suggests that the intraparticle diffusion is not the 
only rate-limiting step [45] and the adsorption of fluoride 
on resins is complex. Fig. 7 depicts that in the beginning, 
the fluoride adsorption on resins is through surface dif-
fusion, and later it is via intra-particle diffusion. Larger 
intercept values for anion exchangers TUL-10 and AMB-21 
in Fig. 7 indicates that the fluoride ions get adsorbed more 
readily on these resins than cation exchangers [46].

3.4. Characterization of resins

3.4.1. FTIR spectroscopy analysis of resins

Figs. 8a–c represent FTIR spectra of the TT-40, TT-42, and 
anion exchange resins TUL-10 and AMB-21 before and after 
adsorption of fluoride which are recorded on a NICOLET 
6700 FTIR spectrophotometer (USA) using a KBr pellet 
technique.

In Fig. 8a, for Al+3 form of TT-40 resin, the band at 
3,400 cm–1 is due to O–H stretching vibration, band at 
1,162 cm–1 is due to stretching frequency of S=O of sulfonic 
acid and the bands at 1,126; 1,036; and 776 cm–1 corresponds 
to SO–Al stretching and Al–O stretching [47,48]. In Fe3+ 
form of TT-40 resin, band at 581 cm–1 corresponds to the 
presence of Fe–O stretching [47].

Table 5
Adsorption kinetic parameters for adsorption of fluoride on different resins

Kinetic models Parameters TT-40-Al TT-40-Fe TT-42-Al TT-42-Fe TUL-10 AMB-21

Pseudo-first- 
 order

k1 (1/min) 0.0152 0.0135 0.0215 0.0158 0.0069 0.0065
qe (mg/g) 1.1184 0.0741 1.9887 0.1739 0.2489 0.1566
R2 0.9495 0.4455 0.9803 0.7917 0.215 0.3513

Pseudo-second- 
order

k2 (g/mg/min) 0.0209 0.3923 0.0086 0.2135 0.172 0.4144
qe (mg/g) 1.935 0.466 1.9700 0.4895 1.8615 1.3292
h (mg/g/min) 0.0783 0.0852 0.0336 0.0511 0.5959 0.7322
R2 0.9979 0.9964 0.9885 0.9978 0.9971 0.9996

Ritchie’s-second- 
order

kR (1/min) 0.1531 0.0229 0.0722 0.0296 0.4001 0.4843
qe (mg/g) 1.9124 0.5123 2.0624 0.4746 2.1017 1.3752
R2 0.9922 0.9081 0.9843 0.9304 0.9118 0.9374

Intra-particle 
diffusion model

kid (mg/g min0.5) 0.1029 0.0138 0.1154 0.0166 0.0526 0.0215
a 0.4591 0.2978 0.0356 0.2687 1.2665 1.0813
R2 0.9004 0.4773 0.9702 0.8278 0.4187 0.4737
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Fig. 6. Pseudo-second-order kinetic model for removal of 
fluoride using resins.
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In Fig. 8b for Al3+ form of TT-42 resin, the band at 3,424 
and 1,164 cm–1 is due to O–H stretching vibrations and 
sulfonic acid group stretching vibration. Bands at 1,126; 
1,036; and 776 cm–1 corresponds to SO–Al and Al–O stretch-
ing. In Fe3+ form of TT-42 resin, the stretching frequency 
at 582 cm–1 corresponds to the presence of Fe–O stretching.

In Fig. 8c, the band at around 1,463 cm–1 confirms the pres-
ence of tertiary amine group in AMB-21 and bands at 3,434; 
2,924; and 2,854 cm–1 corresponds to stretching vibration of 
O–H group, C–H from –CH3 or –CH2 groups. For TUL-10, 
the band at 3,437 cm–1 corresponds stretching vibrations of 
O–H and –NH2 groups and the band at 2,928 cm–1 attribute to 
symmetric stretch vibrations of the –CH2 groups.

A broadening of O–H band in the fluoride treated resins 
is taken as an indicative of electrostatic adsorption between 
the resin and the fluoride [34].

3.4.2. SEM analysis of resins before and after adsorption

SEM images before and after fluoride adsorption of 
cation exchange resins TT-40-Al and TT-42-Al are shown 
in Figs. 9a and b, respectively. There is no much change 
observed in the morphology of resins after the fluoride 
adsorption. Similar observation is made by Li et al. [49] 
in adsorption studies of fluoride by using modified sludge.

3.5. Desorption study

Fig. 10 indicates that both the desorbents 0.1 N NaOH 
and 0.1 N HCl are efficient desorbents for anion exchangers 

TUL-10, AMB-21, and cation exchangers TT-40-Fe, TT-42-Fe. 
However, cation exchangers TT-40-Al, TT-42-Al cannot be 
desorbed using any of these desorbents as fluoride forms 
stable fluoroalumina complex.

3.6. Field sample study

The adsorption experiments are carried out by collect-
ing water samples from Budangad village of Bagalkot dis-
trict in Karnataka, India, as fluoride content in the ground 
water is beyond permissible limit. The details of analysis 
of water sample is listed in Table 6. The fluoride adsorp-
tion experiments are carried out by taking 1 g of resin with 
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50 cm3 of water sample. Fig. 11 indicates that Al+3 form of 
cation exchangers and anion exchangers are more effective 
for the removal of fluoride ions from the water sample. 
The fluoride adsorption is relatively less in water sample 
collected from field due to annoying ions present in the 
water sample.

4. Conclusions

The removal of fluoride is maximum in the pH range 
of 4.0–10.0 with resin quantity of 0.2 g. Maximum removal 
of fluoride is observed within 60 min for anion exchang-
ers and 120 min for cation exchangers. The experimen-
tal data fit well in Freundlich isotherm. The kinetic study 
suggests adsorption process follows pseudo-second-order 
reaction kinetics. Among two anion exchangers used for 
the removal of fluoride TUL-10 has better fluoride removal 
efficiency than AMB-21 as TUL-10 has hydrophilic acrylic 
matrix, however in case of modified cation exchangers Al+3 
form of resins has better fluoride removal efficiency than 
Fe+3 form. This clearly indicates modified resins can be used 
for removal of fluoride. Desorption of resins with 0.1N HCl 
and 0.1 N NaOH clearly indicates desorption is possible 
in case of anion exchangers and cation exchangers in Fe+3 
form. Effectiveness of the resins for the removal of fluoride 
by adsorption process is also tested for field samples.
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