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a b s t r a c t
In this study, a fuzzy dependent-chance interval multi-objective stochastic expected value 
programming model is developed for irrigation water resources management under uncertainties. 
It incorporates fuzzy dependent-chance programming, stochastic expected value programming, 
interval programming into multi-objective programming. Compared with conventional program-
ming methods, it can quantify the relationship between the expected values of stochastic variables 
and the fuzzy goals of expected values set by decision-makers through the satisfactory degrees, and 
trade-off the relationship amid multiple satisfactory degrees selected as objective functions. Besides, 
it can cope with uncertainties expressed as interval numbers, fuzzy numbers, and stochastic vari-
ables. Moreover, the fairness of water allocation constraints formulated by the GINI coefficient can 
achieve the interactions between fair water allocation and satisfactory degrees. The model is applied 
to a real case study of irrigation water resources management of different water types (i.e., surface 
water and groundwater) under different water flow levels (high, medium, and low flow levels) in the 
midstream region of the Heihe River basin, northwest China. The results reveal that: (1) maximum 
water demands of wheat and economic crop are satisfied while that of corn is not met under three 
flow levels; (2) the expected economic benefit and water shortages of crops have positive relation-
ships with water allocation while the expected canal water loss has a negative relationship with 
water allocation; (3) the bigger expected economic benefit results in the higher satisfactory degree 
of the expected economic benefit while the lower expected water shortage and canal water loss lead 
to higher satisfactory degrees of expected water shortage and canal water loss. It shows that the 
developed model can overcome the disadvantages of the single-objective programming of putting 
attention to the satisfactory degree of a kind of expected value, and neglecting the satisfactory degree 
of other associated expected benefit. It also can overwhelm the drawbacks of the two-objective 
programming model of more focus on the satisfactory degree of the expected canal water loss. 
The results can provide different water allocation schemes for decision-makers.

Keywords:  Irrigation water allocation; Interval programming; Stochastic expected value programming; 
Fuzzy dependent-chance programming; Multi-objective programming; Uncertainty
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1. Introduction

The water resource is an essential factor for agricultural 
production, especially for semi-arid and arid districts where 
the agricultural production is obtained mainly from irri-
gation. In recent years, the problems of the water shortage 
caused by the unbalanced relationships between water sup-
plies and water demands in these places have become more 
serious because of the variations of climatic conditions, and 
human activities [1–4]. Besides, a large amount of canal 
water loss in the process of water transportation aggravates 
these problems [5]. Therefore, it is vital to optimizing irri-
gation water resources with consideration of agricultural 
production, water shortage, and canal water loss simultane-
ously to reach sustainable agricultural development.

The deterministic mathematical models have been widely 
used in irrigation water resources management, but they 
are not applicably owing to the uncertain parameters in 
the irrigation water resources system [6,7]. In reality, the 
runoff owns the randomness because of the interactions 
of hydro-meteorological elements, and its caused variabil-
ities of benefits aggravate the uncertainties of decisions. 
In order to deal with the stochastic variables and quantify 
the benefits covering all kinds of possible scenarios, the 
stochastic expected value programming (SEP) is adopted 
through calculating the expected value of stochastic vari-
ables [1,8]. In general, the decision-makers usually require 
that the expected value satisfies the goal set by themselves, 
for example, the expected economic benefit is larger than 
the economic goal of 200 × 108 Yuan. And the measure-
ment of this kind of relationship can recognize the decision 
attitudes of managers. However, the above relationship is 
transformed into the relationship that the expected eco-
nomic benefit is larger than the fuzzy economic goals of 
[180, 200, 230] × 108 Yuan because of the fuzziness of goals 
caused by the subjectivity of decision-makers. This kind 
of problem can be dealt with by fuzzy dependent-chance 
programming (FDCP) [9]. It can quantify the relationship 
between the expected value and fuzzy goals of the expected 
value as a satisfactory degree based on the credibility distri-
bution function, at the same get the optimal water allocation 
schemes corresponding to the maximum satisfactory degree. 
The SEP model can deal with the stochastic variables, while 
the FDCP model is able to cope with the fuzzy numbers, 
but the single model is unable to handle both the stochas-
tic variables and fuzzy numbers simultaneously. Therefore, 
the fuzzy dependent-chance stochastic expected value pro-
gramming (FDCSEP) is developed by integrating the SEP 
with the FDCP model for irrigation water resources man-
agement in this paper. Nevertheless, there are few studies 
developing the FDCSEP model to conduct irrigation water 
resources management.

The FDCSEP model can address the stochastic vari-
ables and fuzzy numbers but is incapable of coping with 
the contradictory multiple objectives. In reality, the man-
agers are usually encountered with multiple objectives, 
such as maximizing the expected economic benefit, min-
imizing the expected water shortages of crops, and the 
trade-off amid multiple objectives can be addressed by the 
multi-objective programming (MOP) approach by search-
ing comprised optimal solutions [10–13]. Therefore, in 
order to improve the robustness of the FDCSEP model, a 

fuzzy dependent-chance multi-objective stochastic expected 
value programming (FDCMOSP) model is developed 
by integrating the MOP model with the FDCSEP model. 
Therefore, maximizing expected economic benefit is trans-
formed into the maximizing the satisfactory degree than 
expected economic benefit is larger than the fuzzy goals of 
the expected economic benefit, and minimizing expected 
water shortage is converted into maximizing the satisfactory 
degree that the expected water shortage is smaller than 
the fuzzy goals of expected water shortage. That is the 
trade-off amid multiple expected values is converted into 
the trade-off amid multiple satisfactory degrees. The non- 
linear format of the satisfactory degree can be transformed 
into the linear format based on the credibility distribution 
function that can be formulated by referring to Zhang et 
al. [8,14–20]. Nevertheless, the previous studies can hardly 
deal with the relationship between the expected values and 
fuzzy goals of expected values, and trade-off the relation-
ships amid multiple satisfactory degrees. Except for the 
randomness of runoff and fuzziness of set goals, the other 
associated parameters have uncertainties because of the 
variations of water and market demands-supplies environ-
ments, such as water demand, market price. These uncer-
tain parameters can be addressed by interval programming 
(IP) through formulating its upper and lower boundary 
values of interval numbers when the data availability is 
limited [6,21–24]. Therefore, in order to address the conflic-
tions amid multiple satisfactory degrees, and deal with the 
uncertainties presented as interval numbers, fuzzy num-
bers, and stochastic variables, the fuzzy dependent-chance 
interval multi-objective stochastic expected value program-
ming (FDCIMOSP) model is developed by integrating the 
IP approach with the FDCMOSP model. Nevertheless, the 
related studies formulating the FDCIMOSP to manage 
agricultural water resources have not been reported.

The water allocations of crops amid different subareas 
are usually determined based on the irrigation benefits, 
which may lead to the problem of unfair water allocation 
among subareas. To address the above problem, the fair-
water allocation constraints measured by the GINI coeffi-
cient is widely used in water resources management, which 
can achieve the fairness of water allocation by minimizing 
the deviation of water allocation per area of one crop amid 
different subareas, at the same time reach the interac-
tions between fair water allocation and satisfactory degree 
[25,26]. Therefore, the fair constraints quantified by the 
GINI coefficient are added into the FDCIMOSP model to 
guide irrigation water resources management in this paper.

Therefore, the purpose of this study is to develop a 
FDCIMOSP model to optimize irrigation water resources 
under uncertainties. It integrates the FDCP, stochastic 
expected value programming, interval programming within 
a MOP framework. It has advantages in: (1) dealing with the 
uncertainties expressed as interval numbers, fuzzy num-
bers, and stochastic variables simultaneously; (2) measuring 
the relationships between expected values and fuzzy goals 
of expected values as the satisfactory degree, and achiev-
ing the trade-off amid multiple satisfactory degrees; (3) 
achieving the interactions between fairness of water allo-
cation, and satisfactory degrees; (4) generating the optimal 
interval water allocation schemes. The FDCIMOSP model 
is applied to a case study for optimizing water allocation 
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of crops in the middle reaches of the Heihe River basin, 
northwest China. And the optimal water allocation will be 
obtained from applying and solving the FDCIMOSP model. 
Besides, the robustness of the FDCIMOSP model is verified 
by comparing it with three single-objective programming 
models, and three two-objective programming models.

2. Methodology

The framework of the FDCIMOSP model is shown in 
Fig. 1. The model integrates FDCP, stochastic expected value 
programming, interval programming with MOP. It can 
deal with the uncertainties presented as interval numbers, 
fuzzy numbers, and stochastic variables, and quantify the 
relationship between the expected value of stochastic vari-
ables and fuzzy goals as the satisfactory degree, and trade-
off the relationships amid multiple satisfactory degrees. 
The detailed process of the model building can be seen below:

2.1. Stochastic expected value programming (SP)

To deal with the stochastic variable and its trigged 
uncertain outputs, such as economic benefit, and canal 
water loss, the stochastic expected value programming 
(SP) is adopted in this paper. The discrete stochastic vari-
able is used here because the probability distributions 
of stochastic variable are difficult to be acquired. Let the 
value of stochastic variable x is equal to ξ1 at the probabil-
ity p p p l nl l ll

n, , ,...,∑ =( ) =( )1 1 2 , when x ≥ 0, the expected 

value of discrete stochastic variable can be rewritten as 

max , , [ ]f E Q x pQ xl
l

n

l= ( )  ( )
=
∑ω ξ=

1
22 . And thus the SP 

model is formulated as follows:

max max , max ,

, ,

f E Q x pQ x

h x s

l
l

n

s

= ( )  = ( )

( ) ≤ =

=
∑ω ω1

1
1

0 1
s.t.

    22,...,S
 (1)

where f is an objective function; E[Q(x,ω1] are the 
expected values of discrete stochastic variables; ω1 is the 
stochastic variable; x is the decision variable; hs(x) are the 
constraints.

2.2. Fuzzy dependent-chance stochastic expected value 
programming

To address the relationship between the expected value 
of stochastic variables and fuzzy goals of the expected value 
set by decision-makers, the FDCSP is formulated by incor-
porating the dependent-chance programming (FDCP) into 
the SP model, which can be rewritten as follows [8,27]:
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where E[Q(xi
±,ωi

±)] is the expected value of stochastic vari-
ables; f

pd
 is the fuzzy goals of expected value; ξ denotes fuzzy 

vectors; Cr pd
± ± ±( )



 ≥ }{E Q x fi i,ω   is the credibility (satisfac-

tory) degree that expected value satisfies the fuzzy goals, and 
it changes from 0 to 1, and the higher value corresponds to 
a higher satisfactory degree. The 0.5 is defined as the allow-
able minimum satisfactory degree, and 1.0 is regarded as the 
allowable maximum satisfactory degree. Through the above 
transformations, maximizing expected value is transformed 
into maximizing the satisfactory degree that expected value 
fulfills the fuzzy goals, where the name can be simplified 
called the satisfactory degree of expected value.

2.3. Fuzzy dependent-chance interval multi-objective 
stochastic expected value programming

In order to address the uncertain parameters with limited 
data availability, and trade-off the contradictory relationship 
amid multiple satisfactory degrees, the FDCIMOSP model 
is formed by combining the FDCSP model with the interval 
multi-objective programming approach. The expression of 
the FDCIMOSP model is as follows:
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where E[Q(x1
±,ω1

±)], E[Q(x2
±,ω2

±)] and E[Q(xt
±,ωt

±)] are the 
expected value1, expected value2, and expected valuet, 
respectively; fp1, 2pf , and fpt are the fuzzy goals of expected 
value1, expected value2, and expected valuet set by deci-
sion-makers, respectively; f1

±, f2
±, and ft

± are objective func-
tions, representing the interval satisfactory degrees of 
expected value1, expected value2, and expected valuet, 
individually. The objective functions in Eq. (3) are non- 
linear formats, and they can be converted into linear formats 
by building corresponding credibility distribution functions.

When the satisfactory degree is expressed as a format 
that expected value is larger than the fuzzy goals, such as 

Cr± ± ±( )



 ≥ }{E Q x fp1 1 1,ω  , the credibility distribution func-

tion is shown in Eq. (4). When the satisfactory degree is 

expressed as a format that expected value is smaller than 

the fuzzy goals, like Cr± ± ±( )



 ≤ }{E Q x fp2 2 2,ω  , the credibil-

ity distribution function is shown in Eq. (5). Let b b b b= ( ), , , 
where b  indicates triangular fuzzy numbers of goals; b b b, ,  
delegate minimum possible value, possible value, and 
maximum possible value of fuzzy goals, respectively, which 
cover variation ranges of goals; Ax represents the expected 
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value. The credibility distribution function of Cr Ax ≥{ }b  
and Cr Ax ≤{ }b  can be defined as the following expressions 
according to the definition of credibility measure [16,17].
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The above two kinds of credibility distributions are 
shown in Fig. 2.

Fig. 2a represents the satisfactory degree of the expected 
benefit, and Fig. 2b shows the satisfactory degree of the 
expected canal loss. The higher expected benefit and lower 

Fig. 1. The model framework of the FDCIMOP model.
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expected loss are desired by managers, and thus the higher 
expected benefit value will result in a higher satisfactory 
degree of expected benefit, and the lower expected loss 
value will lead to a higher satisfactory degree of the expected 
loss. The detailed relationships between the expected value, 
and the satisfactory degree of expected value can be seen 
from Figs. 2a and b.

The satisfactory degree is required to be greater than 
0.5 to avoid the unsuitable satisfactory degree and violation 
risk in management. And thus the satisfactory degree can be 
rewritten as follows based on Eqs. (4) and (5):
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where γ is the satisfactory degree. The non-linear objective 
function in Eq. (3) could be converted to linear forms based 
on Eqs. (6) and (7). After the above transformation, the 
FDCIMOSP model can be rewritten as follows:
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where the f f f fp p p
p

p1 1 1 1=  
min max, ,  is the fuzzy goals of expected 

value1, and fp1
min, f pp1, f p1

max, are the minimum possible, possible 
and maximum possible values of fuzzy goals.

2.4. Solve methods

A method for integrating the interactive algorithm 
method [21] and the minimum deviation method [28] is used 
to solve the FDCIMOSP model. It can solve the FDCIMOSP 
model through solving the upper and lower submodels and 
minimizing the deviations between objectives and respect 
superior and inferior values. The integrated solved method 
is as follows:

2.4.1. Lower objective
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2.4.2. Upper objective
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where fi(X) (i = 1, 2, …, I) denotes the minimum objective 
function; fj(X) (j = I + 1, I + 2, …, m) presents the maxi-
mum objective function; Xi

± is decision variable, Xi
+ and Xi

– 
denote upper bound/lower bound of Xi

±, respectively; fi′, fi
* 

are superior and inferior values of fi(X), individually; fj
*, fj′ 

indicate superior and inferior values of fj(X) separately. 
The superior and inferior values of fi(X) and fj(X) are 
obtained by solving corresponding single objective pro-
gramming. Eqs. (9a) and (b) concerns an equal transforma-
tion, and the detailed process is as follows: the objective 
function can be transformed into the equation of minimiz-
ing the deviation between the superior value of the objec-
tive function and objective function for maximizing the 
objective function. And the higher objective function value 
results in a lower deviation, and thus the minimizing the 
deviation is used to reach the bigger objective function value.

(a)

(b)

Fig. 2. Credibility distributions of triangular fuzzy variable: 
(a) Ax ≥ b  and (b) Ax <− b .
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The detailed process for solving the FDCIMOSP 
method is shown as follows:

• Step 1: Acquire the uncertain input information and 
quantify the uncertain parameters, which includes 
the interval numbers, fuzzy numbers, and stochastic 
variables;

• Step 2: Form the FDCIMOSP model;
• Step 3: Convert the FDCIMOSP model into an equivalent 

linearization form based on Eq. (8);
• Step 4: Transform the linearization of the FDCIMOSP 

model into two sets of submodels based on the interac-
tive algorithm and minimum deviation method;

• Step 5: Solve the F– submodel and get the corresponding 
solution alternatives based on Eq. (9a);

• Step 6: Solve the F+ submodel and get the corresponding 
solution alternatives based on Eq. (9b);

• Step 7: Get the optimal interval objectives value F = [F–, F+], 
and corresponding optimal water allocation schemes;

• Step 8: End.

3. Case study

3.1. Study area

The study area is located at Zhangye City, Gansu 
Province, midstream of the Heihe River basin (HRB), north-
west China, shown in Fig. 3. It is divided into Ganzhou 
District (denoted as GZ), Linze County (denoted as LZ), and 
Gaotai County (denoted as GT). The study crops include 
wheat (denoted as WC), corn (denoted as CC), and eco-
nomic crop (denoted as EC), and the high crop productions 
make it become the main grain production base of China. 
The mean annual precipitation is about 140 mm while the 
mean annual evapotranspiration is around 1,400 mm, and 
thus the crop yield is mainly gained from irrigation. The 
irrigation water resources are derived from surface water 
from HRB, and groundwater. However, the unbalanced 
relationship between water supply and water demand 
becomes severe under the impact of climate changes 
and human activities. Therefore, it is essential to allocate 
limited water resources to crops reasonably to achieve sus-
tainable agricultural development.

3.2. Problem statement

In the irrigation water resources system, the runoff 
owns randomness, and its trigged variabilities of out-
puts (e.g., economic benefit, water shortage, and canal 
water loss) make the water allocation full of uncertainties. 
Besides, the decision-makers usually require the expected 
value fulfills the fuzzy goals of the expected value which is 
caused by the subjectivity of managers, and measurement of 
this kind of relationship can recognize the decision attitudes 
of managers. Nevertheless, previous studies can hardly 
deal with this kind of problem. Moreover, the managers are 
usually faced with contradictory multiple objectives, such 
as the expected economic benefit, expected water short-
age, and expected canal water loss. And trade-offs among 
multiple expected values are transformed into the trade-offs 
between multiple the expected values and respective fuzzy 
goals. Therefore, an applicable optimization model under 
uncertainties is desired for the above problems. In reality, 
the water allocations of crops among different subareas 
are operated based on the irrigation benefit, which may 
lead to the unfairness of water allocation amid different 
subareas, and thus fairness of water allocation is needed 
to be considered in the uncertain optimization model.

3.3. Data collection

Table 1 shows the triangular fuzzy numbers of the 
expected economic benefit, expected water shortage and 
expected canal water loss. The higher expected economic 
benefit and lower expected water shortage and lower canal 
water loss are aspired by managers, and thus the fuzzy 
goals for the above three expected values are different. 
For the expected economic benefit, the fuzzy numbers are 
set as f f f f=  

+ − +
min max max, , . For the expected water shortage 

and canal water loss, the fuzzy numbers are arranged as 
f f f f=  

− + −
min min max, , . Where f –min and f +

min denote the lower 
and upper bounds of minimizing the expected value, 
respectively; the f –max and f +

max represent the lower and 
upper bound of maximizing the expected value separately, 
which are attained through solving the single objective 
programming model. Table 2 displays the groundwater, 

Fig. 3. Study area.
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and surface water with known probabilities. The surface 
water resources are divided into high, medium, and low 
flow levels with probabilities of 25%, 50%, and 25% based 
on the P-III hydrographic curve. Table 3 displays the irri-
gated benefit coefficients of crops and effective precipi-
tation, where the former is calculated by multiplying the 
unit price by unit yield and then dividing irrigation quota, 
and the latter is calculated by multiplying total effective 
precipitation with respective planting areas. Table 4 shows 
the water demands of crops under three flow levels, which 
are computed by multiplying the potential evapotrans-
piration by the crop coefficient. The interval numbers are 
all formulated by parameters estimation method with a 
95% confidence level. The time series of surface water and 
groundwater is collected from the Water Conservancy 
Annual Report of Zhangye City. The water price and oper-
ation cost of surface water and groundwater refer to Jiang 
[29]. The precipitation data is attained from weather sta-
tions of Zhangye Station, Linze Station, and Gaotai Station.

3.4. Agricultural irrigation water allocation optimization model

The initial objective functions of the FDCIMOSP include 
maximizing the expected economic benefit, minimizing 

the expected water shortages of crops, and minimizing the 
expected canal water loss, and they are transformed into 
the maximizing the satisfactory degrees of the expected eco-
nomic benefit, expected water shortage, and expected canal 
water loss, which are expressed as follows:

Objective 1: maximizing the expected economic benefit
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In order to address the relationship between the 
expected value and fuzzy goals of the expected value, the 
satisfactory degree is adopted, and thus the above objective 
functions are transformed into the following formats:

Objective 1: maximizing the satisfactory degree of the expected 
economic benefit
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Objective 2: maximizing the satisfactory degree of the 
expected water shortages of crops
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Table 1
Triangular fuzzy numbers of economic objective, social objective

Minimum  
possible value

Possible  
value

Maximum  
possible value

Economic object (104 Yuan) 456,073 658,154 1,407,088
Social object (104 m3) 18,209 69,421 71,524
Resource object (104 m3) 18,652 50,171 51,691

Table 2
Irrigation water availability and occurrence probabilities of 
flow levels

Water level Surface water  
(104 m3)

Ground water 
(104 m3)

Probability

High [85,500; 104,500] [20,500; 22,700] 0.25
Medium [71,900; 78,400] [25,400; 28,600] 0.5
Low [45,700; 62,800] [30,500; 32,900] 0.25

Table 3
Irrigation benefits of crops and effective precipitation

Subarea Wheat Corn Economic crop

Irrigation benefits (Yuan/m3)

GZ [3.76; 4.14] [3.27; 3.50] [24.84; 27.32]
LZ [2.88; 3.17] [2.23; 2.46] [27.47; 30.22]
GT [3.34; 3.67] [2.14; 2.36] [28.89; 31.78]

Effective precipitation (104 m3)

GZ [1,123; 1,400] [3,939; 4,927] [751; 941]
LZ [794; 996] [1,531; 1,914] [418; 527]
GT [374; 465] [1,213; 1,515] [898; 1,122]
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Eq. (10b) could be converted into the following equiva-
lent expressions (10c) based on Eqs. (6)–(8).

Objective 1: maximizing the satisfactory degree of the 
expected economic benefit

max

*

f

f f ph ij k k ijh

ij k
1

1 1

2

2

±

± ±

±

− + − −( ) +

− −
=
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2

2
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±
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Objective 2: maximizing the satisfactory degree of the 
expected water shortages of crops

max max,f
f f p P

f
h ijh ijh ijh ij

2

2

2
±

± ± ± ±− ′ − − − −( )
=
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Objective 3: maximizing the satisfactory degree of the 
expected canal water loss

max f
f f p p p

f f
h k ijh k ijh

3
1 22

2
±

± ±− ′ − +( )
− ′(

=
WS WGres

mv
res

res
mv

res ))
 (10c)

Constraints

• Surface water availability constraint

WS QS     ijh
j

J

i

I

h h±

==

±∑∑ ≤ ∀
11

 (10d)

• Groundwater availability constraint

WG QG     ijh
j

J

i

I

h h±

==

±∑∑ ≤ ∀
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 (10e)

• Minimum water demand constraint

WS WG ET   ijh ijh ij ijhP i j h± ± ± ±+ + ≥ ∀min, , ,  (10f)

• Maximum water demand constraint

WS WG ET     ijh ijh ij ijhP i j h± ± ± ±+ + ≤ ∀max, , ,  (10g)

• Fairness constraint
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 (10h)

• Non-negative constraint

WS 0   ijh i j h± ≥ ∀ , ,

WG 0   ijh i j h± ≥ ∀ , ,  (10i)

where f1
±, f2

±, and f3
± denote satisfactory degrees of the eco-

nomic benefit, water shortage, and canal water loss, respec-
tively. They change from 0 to 1, and the higher value denotes 
a higher satisfactory degree. The f ±1m, f ±

2m, and f ±
3m are the 

expected economic benefit, water shortage, and canal water 
loss, respectively. The  mv *

eco eco eco eco, ,f f f f ′=  , 


mv *
soc soc soc soc, ,f f f f ′=  ,  

and  mv *
res res res res= , ,f f f f ′  are fuzzy goals of the expected eco-

nomic benefit, water shortage, and canal water loss, indi-
vidually. f ′eco, f ′soc, and f ′res are the minimum possible values 

Table 4
Water demands of crops under different flow levels (104 m3)

District Flow level ET Wheat Corn Economic crop

GZ

High
ETmax [4,112; 8,390] [19,487; 39,769] [7,155; 14,601]
ETmin [3,397; 4,111] [16,106; 19,487] [5,914; 7,157]

Medium
ETmax [3,795; 7,744] [17,988; 36,710] [6,604; 13,478]
ETmin [3,136; 3,995] [14,867; 17,988] [5,459; 6,604]

Low
ETmax [3,479; 7,099] [16,489; 33,651] [6,053; 12,355]
ETmin [2,875; 3,479] [13,628; 16,489] [5,004; 6,054]

LZ

High
ETmax [4,329; 8,833] [11,178; 22,814] [4,534; 9,253]
ETmin [3,577; 4,328] [9,240; 11,179] [3,748; 4,534]

Medium
ETmax [3,996; 8,153] [10,319; 21,059] [4,185; 8,541]
ETmin [3,302; 3,995] [8,528; 10,319] [3,459; 4,185]

Low
ETmax [3,663; 7,474] [9,459; 19,304] [3,837; 7,829]
ETmin [3,027; 3,662] [7,818; 9,459] [3,171; 3,836]

GT

High
ETmax [1,794; 2,172] [10,360; 21,144] [11,119; 22,693]
ETmin [2,875; 3,479] [8,564; 10,360] [9,191; 11,120]

Medium
ETmax [1,656; 2,004] [9,563; 19,518] [10,264; 20,947]
ETmin [3,027; 3,662] [7,905; 9,564] [8,483; 10,264]

Low
ETmax [1,838; 3,749] [8,766; 17,891] [9,409; 19,202]
ETmin [1,518; 1,837] [7,246; 8,767] [7,777; 9,409]
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of fuzzy goals of the economic benefit, water shortage, and 
canal water loss, individually; mv

ecof , mv
socf , and mv

resf  are the pos-
sible values of fuzzy goals of the economic benefit, water 
shortage, and canal water loss, separately; f *eco, f *soc, and f *res 
are the maximum possible values of fuzzy goals of the 
economic benefit, water shortage, and canal water loss, 
respectively; ph is occurrence probability of surface flow 
level, and h represents the subscript of flow level. i declaims 
the subscripts of subareas, i = 1 denotes GZ, i = 2 presents 
LZ and i = 3 is GT. j delegates subscripts of crops, j = 1 is 
WC, j = 2 is CC and j = 3 is EC. k1 and k2 are subscripts 
of surface water and groundwater, separately. BT±

ij is the 
irrigation benefit coefficient (Yuan/m3). BS and BP declaim 
irrigation water price and operation cost (Yuan/m3), sepa-
rately. p is the irrigation water-use efficiency. ET±

ijh denotes 
crop water demand (104 m3). P±

ij is effective precipitation 
(104 m3). WS±

ijh and WG±
ijh are gross water allocation of sur-

face water and groundwater (104 m3), decision variables; 
QS±

h and QGh
± denote available gross surface water and 

groundwater under different flow levels respectively, 
(104 m3); G0 is the GINI coefficient, which changes from 0 
to 1, and the bigger value represents higher unfairness [30]. 
The 0.2 is used to promise the absolute fairness of water 
allocation for each crop among three subareas in this paper.

4. Results analysis

The results of optimal water allocation and satisfac-
tory degrees of the expected economic benefit, water 
shortage, and canal water loss can be attained by solving 
the FDCIMOSP model. The result analysis includes two 
aspects: (1) optimal water allocation schemes analysis and 
(2) satisfactory degree analysis.

4.1. Optimal water allocation schemes

Fig. 4 shows the total water allocation of crops in 
three subareas. To evaluate the water shortage states of 
crops, the difference between the critical water demand 
and water allocation is compared, where the critical water 
demand is calculated by maximum water demand sub-
tracting effective precipitation. If the difference is 0, indi-
cating the maximum water demands of crops are satisfied, 

else a higher difference value means more serious water 
shortages of crops. Fig. 4 shows that the maximum water 
demands of wheat and economic crops are satisfied while 
the maximum water demand for corn is not met in three 
subareas under three flow levels. This is because the water 
resources are firstly allocated to crop with a higher irrigated 
benefit to reach the higher expected economic benefit and 
less water shortages of crops under the condition of lim-
ited water availability. It indicates that the maximum water 
demand for corn is not satisfied, and the difference between 
critical water demand and total water allocation increases 
with the reduction of flow levels, illustrating that the water 
shortage state of crop aggravates with the decline of flow 
levels. In other words, the water shortage of corn under 
high flow level is lowest, followed by medium flow level 
and low flow level. This is because the reduction range of 
available water resources is larger than the decline degree 
of critical water demands with variations of flow levels. 
It also discloses that the total water allocation of the crop in 
GZ is biggest, followed by LZ and GT, which is consistent 
with the water demands of crops in three subareas.

The surface water allocation and groundwater allocation 
of each crop present different variations for three subareas 
and three flow levels, and thus the differences in surface 
water allocation and groundwater allocation for each crop 
and each subarea are compared and analyzed, which is 
shown in Fig. 5. In three subareas, the surface water allo-
cations of three crops decrease with the reduction of flow 
levels, while the groundwater presents different variations. 
Taking wheat as an example, the surface water allocations 
of wheat in GZ are [6,151.02; 7,266.87] × 104 m3, [5,065.28; 
5,895.58] × 104 m3, and [1,107.62; 1,682.74] × 104 m3 for 
high, medium, and low flow level, respectively, perform-
ing a decreasing tendency with variations of flow levels, 
and the groundwater allocation of wheat in GZ 0, [504.89; 
725.90] × 104 m3 and [3,881.70; 4,293.36] × 104 m3 respec-
tively, presenting an increasing tendency with the varia-
tions of flow levels. The groundwater allocation of wheat in 
LZ denotes first increasing and then decreasing tendency, 
while the groundwater allocation of wheat in GT expresses 
first decreasing and then increasing trend with the varia-
tions of flow levels. The above regulations illustrate that 
the groundwater is selected as supplementary sources to 
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meet the respective maximum water demands of the wheat 
in three subareas. It is remarkable that the surface water 
allocation of the economic crop in GT is relatively high, 
which is because the total water demand of economic crops 
in GT is higher than other two subareas, and operation and 
price costs of surface water are lower than groundwater, 
and thus the more surface water resources are allocated 
to the economic crops in GT to satisfy its maximum water 
demand and achieve higher economic benefit. The ground-
water allocation of corn in three subareas show different 
variation tendencies with the changes of flow levels, per-
forming that the groundwater allocation of corn in GZ and 
LZ decreases with the reduction of flow levels, while that 
in GT presents first increasing and then decreasing trend. 
The differences in groundwater allocation amid three flow 
levels are caused by the various unbalanced relationship 
between water demand and water supply, and the reduc-
tion of available groundwater with the variation of low 
levels. The differences in groundwater allocation among 
three subareas are caused by the irrigation benefit, and the 
water resources are more allocated to crops of subareas 
with higher irrigation benefits. For example, the irrigation 
benefit of corn is [3.27; 3.50] × Yuan/m3, [2.23; 2.46] × Yuan/
m3, and [2.14; 2.36] × Yuan/m3 for GZ, LZ and GT, respec-
tively. Thus the groundwater allocation of the corn in GZ is 
the biggest, followed by LZ and GT.

4.2. Optimal satisfactory degrees objective

The 0.5 is set as the minimum satisfactory degree of the 
expected economic benefit, water shortage, and canal water 
loss, and the 1.0 is selected as the maximum satisfactory 
degree of the expected economic benefit, water shortage, 
and canal water loss. If the satisfactory degree is between 
the minimum satisfactory degree and maximum satisfac-
tory degree, which means the managers are satisfied with 
the current expected economic benefit, water shortage, and 
canal water loss, and the corresponding optimal water allo-
cation schemes can be adopted by the managers. Because 
the bigger economic benefit, lower water shortage of crops, 

and smaller canal water loss are desired by managers, and 
thus bigger economic benefit, lower water shortage of crops, 
and smaller canal water loss will result in the bigger sat-
isfactory degrees of the economic benefit, water shortage, 
and canal water loss. The above regulations are reflected 
in the optimal results. For example, the obtained interval 
economic benefit, water shortage, and canal water loss are 
[111.9; 140.7] × 108 Yuan, [18,208.8; 19,973.8] × 104 m3, and 
[43,180; 50,170] × 104 m3, respectively. And the correspond-
ing relationships between expected values and satisfactory 
degree of the expected values are as follows: the maximum 
value of the economic benefit of 140.7 × 108 Yuan corre-
sponds to its maximum satisfactory degree of 1.0, and the 
minimum value of water shortage of 18,208.8 × 104 m3 cor-
responds to its maximum satisfactory degree of 1.0, and 
the minimum value of canal water loss of 43,180 × 104 m3 
corresponds to its maximum satisfactory degree of 0.61. 
Conversely, a higher satisfactory degree of the economic 
benefit means the bigger economic benefit, and a higher 
satisfactory degree of the water shortage indicates the lower 
water shortages of crops, and a higher satisfactory degree 
of the canal water loss donates the lower canal water loss. 
Compared with expected values, the satisfactory degrees of 
expected values can not only quantify the expected values 
but also measure the relationship between expected values 
and fuzzy goals of the expected values. Therefore, optimal 
satisfactory degrees of expected values are analyzed in this 
section. The results show that the satisfactory degrees of 
economic benefit, water shortage, and canal water loss are 
[0.81; 1], [0.98; 1], and [0.50; 0.61], respectively, between the 
minimum satisfactory degree and maximum satisfactory 
degree, and thus the expected values and corresponding 
optimal water allocation schemes can be adopted by man-
agers. Moreover, it illustrates that satisfactory degrees of 
economic benefit and water shortage are contradictory with 
the satisfactory degree of canal water loss, which is caused 
by the relationship between water allocation and expected 
values. In general, the expected economic benefit increases, 
and the water shortage decreases, and the canal water loss 
enlarges with the increasing water allocation, and thus the 
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satisfactory degrees of economic benefit and water short-
age increase, the satisfactory degree of canal water loss 
decreases with the rise of water allocation. Therefore, if 
the managers require to reduce the canal water loss, fewer 
water resources should be allocated; if the managers want 
to achieve higher economic benefits and alleviate the water 
shortage of crops, more water resources should be allo-
cated. And the decision-makers can select the correspond-
ing water allocation schemes based on their emphasis and 
preferences.

5. Discussion

5.1. Comparison with single objective programming

The FDCIMOSP model is compared to three single 
objective programming models to verify its robustness. 

The first model is the economy-oriented fuzzy depen-
dent-chance programming (EFDCP) model. The second is 
the society-oriented fuzzy dependent-chance programming 
(SFDCP) model. The third model is the resource-oriented 
fuzzy dependent-chance programming (RFDCP) model. 
The results are shown in Fig. 6.

Figs. 6a–e are the results of satisfactory degrees of 
the expected economic benefit, water shortage, and canal 
water loss of four models, and the economic benefit, water 
shortage, and canal water loss, and water allocation of 
four models. Fig. 6a indicates that the satisfactory degrees 
of the economic benefit, water shortage, and canal water 
loss derived from the single objective programming model 
can reach its respective maximum satisfactory degree, 
meanwhile, the satisfactory degrees of the economic bene-
fit, water shortage and canal water loss obtained from the 
FDCIMOSP model are between the minimum satisfactory 
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degree and maximum satisfactory degree. This is because 
the single objective programming model only optimizes 
the satisfactory degree of the single expected value not tak-
ing the satisfactory degrees of other associated expected 
values into account, but the FDCIMOP model optimizes 
and tradeoffs the multiple satisfactory degrees of the eco-
nomic benefit, water shortage, and canal water loss simul-
taneously. Fig. 6b shows the upper bound of the economic 
benefit obtained from the FDCIMOSP model is the same as 
the EFDCP model, disclosing that the FDCIMOSP model 
can cover the economic benefit obtained from the EFDCP 
model. Fig. 6c shows that the FDCIMOSP model has the 
same interval water shortage ([18,208.8; 19,773.8] × 104 m3) 
with the SFDCP model, indicating that the FDCIMOSP 
model can represent the SFDCP model to optimize irriga-
tion water resources. Fig. 6d shows that the FDCIMOSP 
model has higher canal water loss than the RFDCP model, 
but at the same, it has the higher economic benefit and lower 
water shortage, and thus it can trade-off the relationship 
amid the economic benefit, water shortage, and canal water 
loss, and overcome the disadvantages of the RFDCP model 
of neglecting the economic benefit and water shortage. 
Fig. 6e indicates that the total water allocation among the 
FDCIMOSP model, SFDCP model, and EFDCP model are the 
same while the total water allocation of the RFDCP model 
is lowest. In summary, the FDCIMOSP model can get the 
compromised water allocation schemes with consideration 
of satisfactory degrees of economic benefit, water shortage, 
and canal water loss, and thus has higher robustness.

5.2. Comparison with two-objectives programming

The FDCIMOSP model is compared to three two-objec-
tive programming models. The objective functions of the 
three alternative models are structured by arbitrary two 
objective functions of the FDCIMOSP model. The objective 
functions of the first model are maximizing satisfactory 
degrees of the expected economic benefit and water shortage. 
The objective functions of the second model are maximizing 

the satisfactory degrees of the expected economic benefit 
and canal water loss. And the third objective functions are 
maximizing the satisfactory degrees of the expected water 
shortage and canal water loss. The comparisons among 
four alternative models about satisfactory degrees of the 
expected economic benefit, water shortage, and canal water 
loss, and water allocation are shown in Fig. 7.

It shows that the interval satisfactory degrees of the 
expected benefit attained from the FDCIMOSP model is 
larger than other models, indicating the FDCIMOSP model 
can effectively express the satisfactory degree of the expected 
economic benefit and has more robustness compared to the 
other three models. As for the satisfactory degree of water 
shortage, the FDCIMOSP model, first model, and third 
model have the same upper bound, but the lower bound of 
the FDCIMOSP model is lower than the other two models, 
disclosing that the FDCIMOSP model can cover wider ranges 
of the satisfactory degree of water shortage, and thus has 
higher robustness for representing the satisfactory degree 
of water shortage. With regard to the satisfactory degree of 
canal water loss, the third model has the biggest value, but 
the corresponding satisfactory degrees of economic benefit 
and water shortage are lowest, and thus it is not beneficial 
to the development of economic benefit and alleviating the 
water shortage of crops. Relatively, the satisfactory degree 
of canal water loss obtained from the FDCIMOSP model 
can give consideration to the satisfactory degrees of the 
economic benefit, water shortage, and canal water loss. 
The water allocation of the FDCIMOSP model is the same 
as the first model and the third model, and higher than the 
second model. This is because that the satisfactory degrees of 
economic benefit and water shortage are positive with water 
allocation while the satisfactory degree of canal water loss 
is negative with water allocation. It also indicates that the 
water allocation schemes from the FDCIMOSP model can 
give consideration to the satisfactory degrees of the expected 
economic benefit, water shortage, and canal water loss.

Consequently, the FDCIMOSP model can get the 
optimal irrigation water allocation schemes taking the 
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satisfactory degrees of the economic benefit, water short-
age, and canal water loss into account, and provides the 
different water allocation schemes for decision-makers. 
Besides, the FDCIMOSP model can overcome the disadvan-
tages of paying more attention to the satisfactory degree of 
single expected value (e.g., economic benefit, water short-
age, canal water loss) existed in the single objective pro-
gramming, and excessive focus on the satisfactory degree 
of canal water loss existed in two objectives programming 
approach. Therefore, the FDCIMOSP model has more 
robustness compared with other alternative models. Based 
on results calculated by the FDCIMOSP model, a num-
ber of findings can be disclosed: the satisfactory degree of 
the expected economic benefit has a positive relationship 
with the expected economic benefit, while the satisfactory 
degrees of the expected water shortage and canal water 
loss have negative relationships with the expected water 
shortage and canal water loss, respectively; Secondly, the 
satisfactory degrees of the expected economic benefit and 
water shortage are positive with water allocation, while the 
satisfactory degree of the expected canal water loss is oppo-
site with water allocation. Thirdly, the water resources are 
more allocated to the crop with higher irrigation benefits.

The optimal water allocation schemes obtained from the 
FDCIMOSP model can provide different water allocation 
schemes for decision-makers. And the decision-makers can 
select the corresponding water allocation schemes based on 
their focus and preferences.

6. Conclusion

This article proposed a fuzzy dependent-chance interval 
multi-objective stochastic expected programming (FDCI-
MOSP) model for irrigation water resources management 
under uncertainties. The model integrates FDCP, stochastic 
expected value programming, interval programming within 
the multi-objectives programming. The satisfactory degrees 
of economic benefit, water shortage, and canal water loss, 
and surface water allocation and groundwater allocation 
is optimized. Besides, the GINI coefficient is used to prom-
ise fair water allocations of crops among three subareas. 
The model has the following advantages:

• It can deal with the relationship between economic ben-
efit, water shortage, and canal water loss and respective 
fuzzy goals based on the credibility degree, and trade-off 
relationships amid multiple satisfactory degrees.

• It can address the uncertainties expressed as interval 
numbers, fuzzy numbers, and stochastic variables.

• It can promise the fairness of water allocation, and 
achieve the interactions amid fairness of water allocation, 
and satisfactory degree.

The developed model was applied to a real case study, 
and the results showed that it is applicable for irrigation 
water resources in the arid-semi-arid district, and it can pro-
vide multiple groups of optimal water resource schemes of 
crops for decision-makers. However, the more uncertain 
parameters caused by the spatial difference in soil types, 
topography should be considered to make the water alloca-
tion schemes more robustness, which will be studied further.
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