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a b s t r a c t
In order to develop a tool for modeling the efficiency of municipal wastewater treatment plants 
(MWWTP), a reliable prediction tool is essential. In this research, two scenarios (I and II) were 
investigated for modeling the performance of Nicosia MWWTP. The extreme learning machine 
(ELM), which is a newly developed black-box model, combined with principal component anal-
ysis was developed in scenario I and two principal components (PCs) variables were generated, 
while in scenario II, traditional multi-layer perceptron (MLP) neural network and multiple linear 
regression (MLR) models were established for comparison. The daily measured data obtained from 
new Nicosia MWWTP includes (pHinf, Conductivityinf, BODinf, CODinf, Total-Ninf, Total-Pinf, NH4–Ninf, 
SSinf and TSSinf) as the input variables and (BODeff, CODeff, Total-Neff, Total-Peff) as the correspond-
ing outputs. Taylor diagrams, box and whisker were also utilized to examine the similarities and 
comparisons between the observed and predicted values for both the ELM and PCs-ELM in sce-
nario I. The obtained results based on the performance indices showed that the PCs-ELM model 
has higher performance accuracy than the novel ELM model. The results also showed increases of 
the PCs-ELM of about 12%, 2%, 20% and 6% for BODeff, CODeff, TNeff (total nitrogen) and TPeff (total 
phosphorite) with regard to the ELM model. Also, the comparison results demonstrated that ELM 
and MLP revealed higher prediction accuracy than the MLR model, and the ELM model compa-
rably outperformed the MLP model. The overall results indicated that both the PCs-ELM and two 
scenarios could be alternative reliable tools for modeling the performance of Nicosia MWWTP.

Keywords:  Wastewater treatment plant; Extreme learning machine; Principal component analysis; 
Multi-layer perceptron neural network; Nicosia-Cyprus

1. Introduction

Water is essential for sustaining life; therefore, an 
affordable and adequate supply of water must be avail-
able [1]. Municipal wastewater treatment plants (MWWTP) 
are processes that remove contaminants from untreated 
domestic wastewater with the goal of safeguarding pub-
lic health and the natural environment [2]. A satisfactory 
treatment plant is vital in order to avoid the discharge of 

high pollutants and to meet the required standards by 
law. A combination of parameters from physical, chemical 
and biological characteristics are often the major factors 
affecting the operation and control of MWWTP [3]. Due 
to various compositions and characteristics of wastewa-
ter treatment plant (WWTP) variables, the performance 
can be assessed by considering certain sensitive variables 
such as total nitrogen (TN), biological oxygen demand 
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(BOD), total suspended solids (TSS) and chemical oxygen 
demand (COD). The available literature and published 
studies for predicting the MWWTP have used these param-
eters [3]. The quality of untreated and treated sewage has 
a significant effect on the operation and efficiency of any 
MWWTP. However, MWWTPs comprise a large number of 
parameters and operations which are complex in terms of 
measurement and evaluation [4]. Hence, modeling this sys-
tem is considered difficult due to the nature of the process 
and most of the available traditional models are based on 
assumptions, estimations and require too much time and 
money; as such, a reliable and appropriate tool is indis-
pensable in predicting the performance of MWWTPs [5,6].

On the other hand, artificial intelligence (AI) models 
play a vital role and have created significant variations for 
forecasting several environmental and hydrological phe-
nomena [7–13]. Meanwhile, recent studies have shown that 
black-box models like support vector machine (SVM), arti-
ficial neural networks (ANN) and adaptive neuro-fuzzy 
inference system (ANFIS) could be suitable alternatives 
for the performance analysis of WWTPs. For example, 
Maleki et al. [14] predicted the influent parameters in a 
WWTP using an auto-regressive integrated moving aver-
age (ARIMA) and neural network auto-regression (NNAR) 
models. Despite the acceptable performance of the ARIMA 
model, the results showed better prediction performance 
for NNAR with regard to ARIMA. Chen et al. [15] devel-
oped a combination of ANN, genetic algorithm and fuzzy 
logic as a new method for modeling industrial WWTPs in 
Taiwan. The proposed new method served as a control strat-
egy for the successful management of the WWTP. Granata 
et al. [16] proposed two different machine learning mod-
els (SVM and decision tree) for WWTPs using different 
input combinations to predict the treated effluents (COD, 
BOD, TSS and total dissolved solids (TDS)). The obtained 
results indicated that both SVM and decision tree produced 
predictive skills; however, comparatively, SVM was slightly 
better than the decision tree. Verma et al. [17] demonstrated 
the ability of five different data mining approaches includ-
ing multi-layer perceptron (MLP), K-nearest neighbor, 
SVM, random forest and multi-variate adaptive regres-
sion spline to estimate the TSS in a WWTP using differ-
ent input parameters. The obtained results depicted that 
MLP outperformed all the other models.

In addition, [18–20] conducted studies (i.e., ANFIS, 
ANN, SVM) and demonstrated the superiority of the AI 
models over the classical models in terms of performance 
accuracy. Due to the problems of overfitting, local minima, 
and slow learning speed by some of the AI models such 
as ANN, a novel, new and emerging algorithm known as 
the extreme learning machine (ELM) model was proposed 
by Huang et al. [21] to overcome the disadvantages of the 
traditional feed-forward backpropagation. On the other 
hand, principal component analysis (PCA) has been applied 
successfully in the analysis of environmental engineering 
problems [11,22–24].

More recent state-of-art studies were carried in the field 
of WWTP for instance, Yaqub et al. [25], adopted long short-
term memory (LSTM) for modeling and removal of ammo-
nium (NH4–N), TN, and total phosphorus (TP) in an anaero-
bic membrane bioreactor using various influent parameters. 

Based on the evaluation criteria the proposed deep learning 
state of art model (LSTM) displayed promising ability with 
regards to the removal and the prediction of NH4–N, TN, 
and TP. Kang et al. [26] proposed an ANN model for the 
simulation of odor concentration in WWTP using different 
input variables (BOD, pH, dissolved oxygen). The results 
indicated that odor concentration can be successfully pre-
dicted using the most utilized AI model (ANN). Ansari et 
al. [27] employed a neuro-fuzzy logic model coupled with 
GA and optimization of particle swam algorithms (PSO), 
the study served as the multi-parametric modeling includ-
ing BOD, COD, NH3–N, pH, oil and grease, and SS. The 
outcomes indicated that both GA-FIS and POS-FIS outper-
formed the ANFIS model in terms of error estimate. Anter 
et al. [28] proposed a new algorithm based on an updated 
version of whale optimization algorithms integrated with 
feature input selection called chaos theory and fuzzy logic 
(CF-BWOA). Similarly, Patel et al. [29] obtained more than 
80% accuracy for the prediction of effluent TSS present 
in the sedimentation tank of clariflocculator. The model 
proved the capability of detecting sensor faults in WWTP 
with promising accuracy. Sharafati et al. [30] proposed a 
predictive approach using a novel ensemble learning model 
namely; AdaBoost regression (ABR) gradient boost regres-
sion (GBR) and random forest regression for the estima-
tion of TDS, BOD, and COD in Qom industrial wastewa-
ter treatment plant Iran. Based on the performance matrix 
the obtained results indicated the prediction skill of the 
ABR model for TDS, GBR model for both COD and BOD.

However, no studies on Nicosia MWWTP that include 
the novel ELM integrated with PCA algorithms have been 
conducted to the best of the author’s knowledge Therefore, 
this study employed two different scenarios: (i) scenario I was 
aimed at developing the potential of ELM with PCA to pre-
dict the performance of new Nicosia MWWTP based on the 
multi-parametric effluent modeling of BODeff, CODeff, total 
nitrogen (TNeff) and total phosphorite (TPeff). The advantage 
of introducing PCA is for choosing the proper inputs of the 
models and to understand whether it is feasible to enhance 
the prediction accuracy of the ELM model. (ii) In scenario 
II, the traditional MLP neural network and multiple linear 
regression (MLR) models were established for comparison 
using the same input combinations as the scenario I.

2. Materials and methods

2.1. Plant description

Nicosia’s new MWWTP will benefit the environment 
as well as human health by protecting drinking and bath-
ing waters from contamination. In addition, it opens up the 
potential to allow wastewater to be reused in irrigation. The 
recently established technology known as membrane bio-
reactor is being used and approximately 270,000 residents 
from both communities will be served. For sustainable 
development and recycling purposes, more than 300 tons/y 
will be generated. A total of about 10 million m³ of qual-
ity effluent can be reused for different agricultural pur-
poses [4,31]. In new Nicosia MWWTP, the line of treatment 
comprises 11 stages from the raw to treated sewage.

Firstly, the sewage is separated into liquid and solid 
waste and passes through the first chamber called the 
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screening chamber (1), in which the solids larger than 6 mm 
are removed. The inflow then flows down slowly so that 
the heavy solids (grit, sand) can fall to the bottom and oil 
and grease float to the surface in the grit and grease cham-
ber (2). The pump station (3) pumps up the water to the 
next unit called the fine sieve (4), which removes solids 
larger than 2 mm. The next step is the biological treat-
ment of waste, which is the stage that creates the condition 
to encourage bacteria to consume the waste comprising 
three units (5, 6 and 7). Stage (8) involves the separation 
and treatment of the by-products of the whole process 
into clean water, fertilizer and biogas in a process called 
membrane treatment. After that, the water is disinfected in 
the chlorine contact tank (10). Tank (11) treats the sewage 
effluent before it is discharged into the river. The concen-
tration of the effluent BODeff, CODeff, TNeff and TPeff all in 
(mg/L) at the plant exit is shown in Fig. 1. It can be seen 
from the figure that the time series and box and whiskers 
plots indicate the profiles, range and extent of the outliers 
in each parameter. Some of the measured daily data were 
outliers for all the parameters. This explains the inconsis-
tency between the numbers of samples even though the 
distribution of outliers is relatively close to normality.

2.2. Model development and data used

For the development of the model for the current study, 
Fig. 2 shows the flowchart of a used model. From the flow-
chart, it can be observed that the input and output data 
(392 instances) are collected, pre-processed and normalized 
based on Eq. (1). For the purpose of this study, two differ-
ent scenarios were employed for modeling the performance 
of Nicosia MWWTP as mentioned above. In scenario I, 
data is directly imposed on the ELM model and modeling 
is performed using all the input variables. If the attained 
error is acceptable based on performance criteria, then the 
best models are selected; however, if they are not accept-
able, then the modeling is repeated by adjusting the model 
parameters. In the second stage of the flowchart, the PCA 
algorithm was employed for the appropriate selection 
of the input variable and to improve the ELM model by 
using the new principal component (PCs) variables as the 
new input variables of the ELM models (Eq. (2). Finally, 
the same procedure is repeated for the selected PCs as 
that of the ELM models. For scenario II, the two most com-
monly used linear and non-linear models (i.e., MLR and 
MLP) were also introduced for comparison with the novel 
ELM using the same input combination and PCs variable.
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Fig. 1. Effluent (a) BODeff, (b) CODeff, (c) TNeff and (d) TPeff concentration at the plant exit, including a box plot of the data.
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The daily measured data obtained from new Nicosia 
MWWTP includes (pHinf, Conductivityinf, BODinf, CODinf, 
Total-Ninf, Total-Pinf, NH4–Ninf, SSinf and TSSinf) as the input 
variables and (BODeff, CODeff, Total-Neff, Total-Peff) as the 
corresponding outputs. The normalized data were sepa-
rated into 75% and 25% for calibration and verification, 
respectively.

2.3. Extreme learning machine

As a newly emerging black-box data-driven algorithm, 
the ELM was first proposed by [21] and comprises a sin-
gle hidden layer feed-forward network (SLFN). The ELM 
is different from the traditional feed-forward neural net-
work as it overcomes the problems of slow learning speed, 
local minima and overfitting [32–36]. It is notable that the 
potential of the ELM could be attributed to its generaliza-
tion ability and fast learning speed. Due to it is promis-
ing performance ability, ELM has been applied in various 
fields of hydro-environmental studies [37]. For more details 

about ELM, models refer to [36,38–40]. The structure of 
the ELM network used in this study is presented in Fig. 3.

In this study, an ELM model was developed using 
calibration and validation data sets as mentioned above. 
For the set of N training samples (i.e., t = 1,2,…,N) in 
which xt

d∈  and yt ∈, a SLFN with H hidden nodes is 
mathematically expressed as [21]:

i

H

i i i t i tB g x z
=
∑ ⋅ +( ) =

1

α β  (3)

where B H∈ , Z zt ∈( )  and G(α,β,x) represents the 
predicted weights in the output layer, model output and 
activation function of the hidden layer, respectively. 
Additionally, αi, βi, i and d indicate the weights of the ran-
domized layers, biases of these randomized layers, the 
index of the specific node in the hidden layer and the num-
ber of inputs, respectively.

As mentioned above, the study the employed activation 
function as:

G x
x

( ) =
+ −( )

1
1 exp

 (4)

In an ELM model, a suitable number of hidden neu-
rons, randomized input layer weights (α), and random-
ized hidden layer biases (β) can lead to a zero error, which 
therefore produced the weights of the output layer that can 
be obtained analytically for any training [21]:
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The system of linear equations can be used to obtain the 
value of B for any input-output training samples:
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Fig. 2. Flow chart of the proposed models employed in this paper.



S.I. Abba et al. / Desalination and Water Treatment 215 (2021) 414–426418

where G represents the hidden layer output and T is the 
transpose of the matrix. The output weights B� can be esti-
mated by inverting the matrix of the hidden layer using the 
Moore–Penrose generalized inverse function (+):



B G Y= +  (10)

Ultimately, the estimated values ŷ (i.e., represents a pre-
dicted value of BODeff, CODeff, TPeff and TNeff) can be deter-
mined by:





y B g x
i

H

i i i t i= ⋅ +( )
=
∑

1

α β  (11)

2.4. Multi-layer perceptron neural network

MLP neural network, as one of the most commonly 
used types of ANN, has the capability to handle non-lin-
ear systems and has been described in several studies as a 
universal approximator among the different categories of 
ANNs [41]. As with the other traditional ANNs, MLP con-
sists of an input layer, and one or more hidden and output 
layers in its architecture (Fig. 4) [42,43]. The nodes of the 
input layer are connected to those in the hidden layer and 
subsequently the output layer. The information and sig-
nals are processed and transmitted from the input to the 
output layer with the help of weights and biases through 
sequential mathematical operations. The Levenberg–
Marquardt algorithm is used as a learning algorithm 
to optimize the error between the measured and com-
puted values [44–46]. The training algorithm is iteratively 
repeated until the desired outcomes are achieved.

2.5. Multi-linear regression analysis

MLR is the most well-known and utilized linear 
regression due to it is multi predictor combination abil-
ity. In MLR, the linear correlation between one response 
(dependent variable or output) can be estimated with two 
or more predictors (independent variable or input) [46,47]. 
In the present study, MLR is employed for comparison 
with non-linear models and also as a benchmarking model. 
The most common form of MLR is shown as:

Y a a X
j

j j= + +
=
∑0

1

 (12)

where Y� is the model’s output, Xj’s are the independent 
input variables to the model, and a0,a1,a2,…,am are partial 
regression coefficients.

2.6. Principal component analysis

PCA is one of the common multi-variate statistical tech-
niques for reducing the dimensions of high volumes of 
data. The dimensionality reduction is normally achieved 
by randomly identifying the linear correlation between 
the variables [48]. By applying this method, input vari-
ables are changed and be used as independent PCs vari-
able [49]. Kaiser–Meyer–Olkin (KMO) is among the 
most common statistics used to assess the suitability of 
data in any factor analysis (FA) [24]. The classification of 
the KMO coefficient is demonstrated in Table 1 and the 
KMO index is presented in Eq. (4). For more explanation 
of PCA, refer to the studies of [23,48,50–52].

KMO =
∑∑

∑∑ + ∑∑

r
r r

ij

ij ij

2

2 2  (13)

where rij is the correlation coefficient between the vari-
able of i and j, and aij is the partial correlation coefficient 
between them.

2.7. Model performance indicators

Various evaluation criteria can be used to determine 
the comparative accuracy of the predictive models; as 
such, a multi-criteria indicator for measuring the mod-
el’s performance was employed in this study. The deter-
mination coefficient of (R2 or DC) as a goodness-of-fit 
and two statistical error including mean-squared error 
(RMSE) and mean absolute percentage error (MAPE) 
were used for the evaluation of the models [41,44]:
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where N, Yobsi, Y� and Ycomi are data number, observed data, 
average value of the observed data and computed values, 
respectively.

3. Results and discussion

3.1. Implementation of scenario I

Various structures for ELM, 4PCs-ELM and 6PCs-ELM 
were used to obtain the best structure of the model. The 
optimum number of hidden neurons was identified as 
the best optimal ELM structure for all the combinations. 
PCA was employed for choosing the input variable in 
order to enhance the ELM prediction [22]. According to the 
obtained KMO value of 0.735, the PCA is suitable for all 
the output variables (Table 1). In PCA, different approaches 
are used for deciding which factors can noticeably affect 
the resulting pattern of the data. As such, this research 
employed the approach of selecting the factors with eigen-
values equal to or greater than 1.00 (Table 2). According to 
Holland, [50], in any correlation matrix, eigenvalues are 

used to condense the variance where the highest eigen-
values (1 and above) are traditionally considered for any 
analysis by eigenvectors ranking. Fig. 5a shows the spe-
cific values and the percentage variance of each factor as 
a graph, which demonstrates 9 input variables with the 
corresponding 9 eigenvectors and eigenvalues. Similarly, 
Table 2 shows the value of each factor and its percentage of 
separation from the primary variable. It can be seen from the 
table that more than 80% of factors were explained by the 
first 6 variables. Likewise, the results indicated that, for up to 
8 factors, there exists a significant percentage of about 95%, 
which can be proved as in Fig. 5a of the obtained results.

Fig. 5b examined the orthonormal loadings biplot rela-
tionship between the variables, where the horizontal axis 
is the first PCA dimension representing 23.9% and the ver-
tical axis is the second PCA dimension. The long or short 
red vector lines indicate the suitability of the presentation 
or otherwise. From both Figs. 5a and b we can extract both 
the 4PCs and 6PCs accordingly. According to Table 3, the 
best results for BODeff, CODeff, TNeff and TPeff were obtained 
using 4PCs-ELM, 6PCs-ELM, 6PCs-ELM and 6PCs-ELM, 
respectively. This can be proved by comparing the val-
ues of R2, RMSE and MAPE. Although the PCs-ELM com-
bination generates the most accurate results in all cases, 
using the single ELM model was also observed to reliable 
for the prediction. This is due to its promising ability to 
handle highly complex and non-linear processes.

A close examination shows that both ELM and PCs-ELM 
produced different performance accuracies, which signifies 
that the individual model type responds in a different way 
to the same or different input parameters. Table 3 also con-
firms that in both calibration and verification, the PCs-ELM 
model achieved the lowest RMSE and MAPE for BODeff, 
CODeff, TNeff and TPeff modeling. The result also shows 
increases in the PCs-ELM of about 12%, 2%, 20% and 6% 
for BODeff, CODeff, TNeff and TPeff with regard to the novel 
ELM model. Box plots for observed data and predicted 
models are shown in Fig. 6. From the Fig, the PCs-ELM 
model was clearly found to obtain the best fit line between 
the observed and estimated values; hence, this demon-
strates the high prediction ability for Nicosia MWWTPs 
and it may be therefore considered a valuable and reli-
able tool for conducting its performance analysis. The plot 

Table 1
Classification of KMO coefficients

Relation of data with FA KMO coefficient

Excellent ≥0.9
Very well 0.8–0.89
Well 0.7–0.79
Mediocre 0.6–0.69
Poor 0.5–0.59
Unacceptable <0.5

Table 2
Eigenvalue and percentage of data explained by each factor

Cumulative Cumulative

Number Eigenvalue Difference Proportion Value Proportion

1 2.153019 0.646156 0.2392 2.153019 0.2392
2 1.506864 0.139714 0.1674 3.659883 0.4067
3 1.36715 0.358621 0.1519 5.027033 0.5586
4 1.008529 0.102154 0.1121 6.035561 0.6706
5 0.906374 0.213251 0.1007 6.941935 0.7713
6 0.693123 0.135041 0.077 7.635059 0.8483
7 0.558082 0.132987 0.062 8.193141 0.9103
8 0.425095 0.043332 0.0472 8.618236 0.9576
9 0.381764 – 0.0424 9 1
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also demonstrates the closeness of all the models with 
the observed values; the plot contained (box and whisker 
median, mean and staples). According to the plot, the extent 
of spread of the values between the observed and predicted 
models indicates the superiority of the PCs-ELM models.

In the same way, the results of RMSE and MAPE 
depict the performance indicator for the best model. It was 
reported that the smaller the values of RMSE and MAPE, 
the more accurate the prediction results [53,54]. Further 
examination of performance accuracy was also investigated 
using a two-dimensional graphical diagram (i.e., Taylor 
diagram), as depicted in Figs. 7a–d. The Taylor diagram is 
a graphical representation method that exhibits how closely 
a model or different model matches the observed and cor-
responding computed values. Moreover, the computed 
models and the observed data are described quantita-
tively in terms of their correlation coefficient (R) and stan-
dard deviations (SD). Fig. 7a shows that the best predictive 
BODeff model is far from the actual (observed) data, which 
signifies less performance accuracy; this could be attributed 
to the small value of R and high dispersion between the 
observed and predictive model. Similarly, Figs. 7b–d proves 
the results in Table 3, the developed model (CODeff, TNeff 
and TPeff) showed outstanding performance in deter-
mining the performance of Nicosia MWWTP. According 
to the value of R and SD for Figs. 7b–d, the best models 
depicted the extent and degree of the prediction skills.

Moreover, a scatter diagram of the best-computed 
model is shown in Fig. 8. The plots indicate a close agree-
ment between the observed and computed values for 
CODeff, TNeff and TPeff, while there is a fair agreement for 
BODeff. This conclusion is in line with that of Nourani et 
al. [3]. Note that data pairs closer to the 45° line represent 
better prediction cases in any scatter plots.

3.2. Implementation of scenario II

As stated above, different scenarios were constructed 
for the multi-parametric prediction of MWWTP perfor-
mance. In scenario II, the MLP and MLR models were 

addressed according to the input variables stated in Eq. (2). 
As with any AI modeling, finding the optimal architecture 
is the main problem due to the fact that there is no stan-
dard pattern for selecting the desired architecture prior 
to the calibration phase [55]. As such, different numbers 
of hidden neurons ranging from 1 to 30 were observed in 
MLP by a trial and error procedure. Three different models 
were trained based on scenario I in section 2.2; the model 
types were defined as MLP-M1 (4-6-1), MLP-M2 (6-6-1) and 
MLP-M3 (9-10-1) indicating the three-input combination 
set in Eq. (2). In MLP-(4-6-1), 4 stands for number of inputs 
imposed to the model, 6 indicates the hidden neuron and 
1 stands for the target output of the model. Similarly, for 
MLR, the models were defined as MLR-M1 (4-1). MLR-M2 
(6-1) and MLR-M3 (9-1) indicating the model type, input 
and output of the models. The performance indices of MLP 
and MLR are shown in Table 4. It can clearly be observed 
that MLP-M2 (6-6-1) and MLR-M2 (6-1) outperformed other 
models for modeling the BODeff. Whereas for modeling 

Fig. 5. (a) Shows the percentage variance vs. a number of factors and eigenvalue vs. a number of factors and (b) orthonormal loadings 
bi-plot of the first two components of the PCA model.
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the CODeff, TNeff and TPeff, MLP-M3 (9-10-1) and MLR-
M3 (9-1) models types emerged as the best combinations. 
The time series plots showing the relationship between 
the observed and computed values for the best MLP and 
MLR models are shown in Fig. 9.

According to Table 4, the presented results indicate the 
improved performance accuracy of MLP in comparison to 
MLR of up to 8%, 3%, 10% and 16% for BODeff, CODeff, TNeff 
and TPeff, respectively. A similar conclusion was drawn by 

Nourani et al. [3] based on a comparison of SVM and MLR 
models. Based on the employed performance indices, it is 
apparent that MLP demonstrated better predictive skills 
than the MLR models despite the promising ability of MLR 
to predict CODeff, TNeff and TPeff. This finding was also in 
line with that of Zhu et al. [43], who reported a slight per-
formance increase of MLP over MLR model. According to 
the proposed scenarios (I and II), the comparative results 
between Tables 3 and 4 revealed that the best performance 

Fig. 7. Taylor diagram showing the degree of prediction in terms of R and SD for (a) BODeff, (b) CODeff, (c) TNeff, and (d) TPeff.
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Fig. 8. Scatter plots of observed and computed values for the best model of (a) BODeff, (b) CODeff, (c) TNeff and (d) TPeff.
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accuracy was obtained with the ELM model. Hence, ELM 
yielded the best accuracy among all the models (MLP and 
MLR) in terms of predictive skills.

Further examination of the models proved that the ELM 
predicted values attained a high level of precision (Fig. 8). 

The PCs-ELM increased the prediction accuracy of BODeff 
up 5% and 13%, CODeff up to an average of 2%, TNeff up 
to 10% and 20% and TPeff up to 15% and 32% with regard 
to the MLP and MLR models, respectively. This serves as 
additional evidence regarding the capability of PCs-ELM for 

Table 3
Results of ELM, and PCs-ELM for BODeff, CODeff, TNeff and TPeff

Calibration Verification

Parameter Model R2 RMSE MAPE R2 RMSE MAPE

All (9 inputs) 0.5439 0.0749 0.0126 0.5168 0.0803 0.0482
BODeff 4PCs-ELM 0.5711 0.0714 0.0042 0.6341 0.0562 0.0143

6PCs-ELM 0.5618 0.0727 0.0088 0.6285 0.0902 0.2009
All (9 inputs) 0.9632 0.0101 0.0051 0.9541 0.0399 0.0191

CODeff 4PCs-ELM 0.9522 0.0268 0.0003 0.9545 0.0534 0.0452
6PCs-ELM 0.9757 0.0208 0.0103 0.9742 0.0515 0.0403
All (9 inputs) 0.8643 0.0424 0.0081 0.7651 0.0347 0.0837

TNeff 4PCs-ELM 0.9169 0.0387 0.0238 0.9128 0.0336 0.0561
6PCs-ELM 0.9457 0.0983 0.0098 0.9656 0.0335 0.0522
All (9 inputs) 0.8803 0.0819 0.0112 0.8159 0.0718 0.1019

TPeff 4PCs-ELM 0.8629 0.0191 0.0335 0.8509 0.0450 0.2542
6PCs-ELM 0.9629 0.0312 0.0205 0.8807 0.0491 0.1303

Table 4
Results of MLP and MLR models for BODeff, CODeff, TNeff and TPeff

Calibration Verification

Model types R2 RMSE MAPE R2 RMSE MAPE

BODeff MLP-M1 (4-6-1) 0.5473 0.1043 0.0564 0.4651 0.1093 0.0341
MLP-M2 (6-6-1) 0.5786 0.1024 0.0239 0.5776 0.1095 0.0468
MLP-M3 (9-10-1) 0.5331 0.1066 0.1445 0.5035 0.1091 0.1494
MLR-M1 (4-1) 0.4775 0.1035 0.0093 0.4531 0.1093 0.0703
MLR-M2 (6-1) 0.5062 0.1034 0.0101 0.5020 0.1093 0.0757
MLR-M3 (9-1) 0.5005 0.1035 0.0291 0.4991 0.1091 0.2187

CODeff MLP-M1 (4-6-1) 0.9516 0.0774 0.0116 0.9756 0.0646 0.0774
MLP-M2 (6-6-1) 0.9599 0.0705 0.0051 0.9747 0.0747 0.0857
MLP-M3 (9-10-1) 0.9617 0.0689 0.0027 0.9555 0.0648 0.0960
MLR-M1 (4-1) 0.9505 0.0783 0.0094 0.9419 0.0549 0.0955
MLR-M2 (6-1) 0.9505 0.0734 0.0088 0.9242 0.0547 0.0893
MLR-M3 (9-1) 0.9574 0.0727 0.0043 0.9552 0.0536 0.0437

TNeff MLP-M1 (4-6-1) 0.64026 0.08839 0.08961 0.63755 0.07613 0.55037
MLP-M2 (6-6-1) 0.86359 0.08196 0.02441 0.81611 0.08324 0.16344
MLP-M3 (9-10-1) 0.87072 0.08028 0.03004 0.86662 0.08302 0.0799
MLR-M1 (4-1) 0.61499 0.08096 0.0187 0.52407 0.07361 0.21512
MLR-M2 (6-1) 0.74987 0.08097 0.01867 0.75299 0.07358 0.21477
MLR-M3 (9-1) 0.76505 0.08044 0.01478 0.76181 0.07323 0.17002

TPeff MLP-M1 (4-6-1) 0.74479 0.20443 0.03042 0.73283 0.02207 0.39568
MLP-M2 (6-6-1) 0.72657 0.20961 0.03789 0.73995 0.02087 0.30032
MLP-M3 (9-10-1) 0.74923 0.19557 0.00829 0.72544 0.01761 0.21034
MLR-M1 (4-1) 0.63768 0.20647 0.02897 0.29993 0.02253 0.39024
MLR-M2 (6-1) 0.64319 0.20489 0.02841 0.35973 0.02155 0.38279
MLR-M3 (9-1) 0.63421 0.20746 0.0193 0.56072 0.01978 0.26007
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modeling the complex and uncertain systems in MWWTPs. 
Similarly, with larger R2 and smaller values of RMSE and 
MAPE, ELM ranked as the best followed by MLP and 
lastly, the MLR model. With regards ELM with all 9 vari-
ables the prediction accuracy (RMSE) decreases by 3%, 2%, 
and 5% for BOD, COD, and TN and increases by 5% for TP.

However, there are several factors that affect the 
model’s performance such as overfitting in the case of AI 
(ANN), class in balance, systematic noise associated with 
the data, pre-processing, model types and randomness of 
the data. According to [8,56–59] for a good analysis of any 
data intelligence model, the efficiency performance should 
include at least one goodness-of-fit (e.g., R2) and at least 
one absolute error measure (e.g., RMSE). In addition, sev-
eral studies have already shown that even for the same type 
of data set, the performance results may deviate from one 
model performance to another. For example, R2 does not take 
into consideration any biases that might be present in the 
data. Therefore, a good model might have a low R2 value, or 
a model that does not fit the data might have a high R2 value. 
Hence, combining the goodness-of-fit, the error measure 
and biases measure could lead to promising and reliable  
simulation [60,61].

4. Conclusion

In this research, two scenarios (I and II) were investi-
gated for modeling the performance of Nicosia MWWTP 
in terms of the effluents BODeff, CODeff, TNeff and TPeff using 
three different model input combinations. The ELM, as a 
newly emerged black-box model combined with PCA was 
developed in scenario I, while in scenario II, traditional 
MLP neural network and MLR models were established 
for comparison.

In scenario I, PCA was employed in this study to 
understand whether it is feasible for improving the accu-
racy of the emerging ELM algorithm. The PCA technique 
helps the ELM mapping by its orthogonal transformation 
of variables and the reduction of system dimensionality. 
The obtained results showed an increase for PCs-ELM of 
about 12%, 2%, 20% and 6% for BODeff, CODeff, TNeff and 
TPeff, respectively, with regard to the novel ELM model. 
Nevertheless, the ELM model demonstrated accurate pre-
diction capability and can also serve as a reliable tool. 
On the other hand, PCA algorithms can be employed to 
reduce the dimensionality of the input vectors, which may 
lead to the achievement of highly accurate prediction.

For scenario II, MLP and MRL models were addressed 
according to the same input variables of the first sce-
nario and the results indicated the improved performance 
accuracy of MLP with regard to MLR up to 8%, 3%, 10% 
and 16% for BODeff, CODeff, TNeff and TPeff, respectively. 
According to the two scenarios, the comparative results 
revealed that the best performance accuracy was obtained 
using ELM model. Hence, ELM yielded the best accu-
racy among all the models (MLP and MLR) in terms of 
predictive skills. The outcomes of the current study may 
contribute to the mentioned multi-parametric modeling of 
the treated effluents and provide a reference benchmark for 
wastewater management and control. It is suggested that 
other algorithms may be applied with a combination of 

PCs in order to develop a new model that could produce 
higher accuracy and more reliable estimates.
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