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a b s t r a c t
In this paper, the effect of time, aeration scheme, aeration rate, and mixed liquor suspended solid 
(MLSS) concentration on the permeate flux in membrane bioreactors have been studied. Aeration 
rates of 0.5, 1.0, and 1.5 LPM were tested with MLSS concentrations of 5, 10, and 15 g/L. Furthermore, 
a continuous and pulsed aeration scheme (5 min on and 5 min off) was tested. The experimen-
tal data were used to develop an artificial neural network (ANN) model, which showed excel-
lent agreement (R2 = 0.9963) with the data. The average normalized flux decreased as the MLSS 
concentration increased from 5 to 15 g/L and increased as the aeration rate increased from 0.5 to 
1.5 LPM. No clear correlation was found between the aeration schemes and the average normal-
ized flux. ANN weights analysis revealed the order of importance was time > aeration rate > MLSS 
concentration > aeration scheme.

Keywords:  Neural networks; Membrane bioreactors; Aeration scheme; Membrane separation; 
Wastewater treatment

1. Introduction

Due to the increased water scarcity, it is expected that 
by 2025 half of the world’s population will be affected by 
the lack of clean water [1]. Therefore, in addition to con-
ventional desalination techniques for seawater and brack-
ish water, recovery, and reuse of wastewater have also 
become important. Membrane bioreactors (MBRs) are 
considered an economical and a compact technique which  
have attracted great attention from industrial and munici-
pal wastewater treatment plants in the past few decades [2]. 
The MBR system combines a biological treatment process 
and a membrane filtration unit. The MBR technology offers 
many advantages over the conventional activated sludge 
process, such as providing low amounts of waste sludge 

and high effluent quality [3]. Two of the major problems 
encountered in this process are energy consumption and 
membrane fouling [4,5]. Over 90% of the energy require-
ments in a submerged MBR process is due to aeration [6]. 
The concentration of dissolved oxygen affects the effi-
ciency of MBR. At low dissolved oxygen concentration, the 
activity of the microorganisms is low, which leads to the 
low efficiency of the MBR process. More than a required 
aeration rate must be provided to maintain good effluent 
quality, which also results in high energy consumption [7]. 
Further research showed that intermittent aeration pre-
vented fouling and preserved bioflocs while improving 
the filtration process [8,9]. The pulsed aeration approach 
showed enhanced permeate flux and also prevents floc 
damage that lowers the membrane fouling [10,11]. The 
increase in the MLSS concentration results in lower 



165J. Jawad et al. / Desalination and Water Treatment 218 (2021) 164–176

permeate flux due to the increased fouling in the mem-
branes [12,13]. High MLSS concentration results in higher 
cake resistance and increased the dynamic viscosity of the 
solution, which leads to higher internal friction. Although 
most studies showed that MLSS concentration had an 
adverse effect on the permeate flux, however, Le-Clech et 
al. [14] showed that MLSS had no effect on fouling up to a 
threshold concentration value. Several studies have been 
performed to simulate and model the MBR process in an 
attempt to optimize the performance of the process. In the 
last few decades, artificial intelligence and machine learn-
ing have shown a high capability for problem-solving in 
environmental engineering problems. These techniques 
have been used to model and optimize pollutant removal 
in water treatment processes [15]. One of the highly used 
machine learning techniques is the artificial neural network 
(ANN). ANN is a data-driven technique and a black-box 
model that is not governed by physical laws [16]. The aim 
of ANN is to develop a relationship between a set of input 
variables and one or more output variables. ANN holds 
few advantages over the conventional theoretical models 
such as the capability of modeling highly non-linear sys-
tems, working with noisy or incomplete data, less computa-
tional time, and the ability to train and update the existing 
model with new data when available [17].

Several studies have been conducted in the literature to 
model the MBR process using different types of ANN. Chen 
et al. [18] presented the applicability of two-phase anaero-
bic digestion (TPAD) MBR for the treatment of pharmaceu-
tical wastewater. ANN was used to investigate the removal 
of chemical oxygen demand (COD) by evaluating the per-
formance of three multi-layer perceptron (MLP) type neural 
networks. Liu et al. [19] used principal component analy-
sis (PCA) to identify dissolved oxygen (DO), MLSS, pH, 
temperature, and suction power as the most impactful vari-
ables on the permeate flux in MBRs. The permeate flux was 
predicted using the ANN model with particle swarm optimi-
zation (PSO) to study membrane fouling in MBR. In another 
research, a conventional MLP type model was compared to 
the PSO-based ANN model that showed the later to be more 
superior in the prediction of fouling resistance in MBRs [2]. 
Similarly, Li et al. [20] used a genetic algorithm (GA) pro-
cess for the optimization of the weights in an ANN model to 
study membrane fouling. Pendashteh et al. [21] modeled the 
MBR treatment of hypersaline oily wastewater using ANN 
to predict several effluent characteristics. The relative impor-
tance showed that the organic loading rate (OLR) had the 
most effect, whereas the total dissolved solids (TDS) had the 
least effect on the model outputs. Mirbagheri et al. [22] devel-
oped a radial basis function (RBF) neural network to pre-
dict effluent concentration for the treatment of a combined 
municipal and industrial wastewater. In another research, 
the authors also concluded that MLP had better prediction 
and generalization ability than RBF neural networks when 
trained using GA to predict transmembrane pressure (TMP) 
and permeate flux in MBRs [3]. The Levenberg–Marquardt 
method showed the least relative error when used to model 
the treatment of petrochemical wastewater to predict TMP 
and COD using ANN in MBRs [23]. The sensitivity analy-
sis revealed that the hydraulic retention time (HRT) and 
MLSS had the highest impact on the outputs. Schmitt et al. 

[5] studied membrane fouling in an anoxic–aerobic MBR by 
predicting TMP based on several input variables. The study 
showed that typical operating conditions such as MLSS, DO, 
pH, and COD could not be linked with the TMP, but total 
nitrogen (TN) and total phosphorus (TP) concentrations had 
higher impact on the TMP.

Geissler et al. [24] presented an Elman neural net-
work (ENN) model to predict the permeate flux in an 
MBR process with less than 2.7% average deviation. 
A semi-empirical model described the filtration resistance 
based on the operating parameters to estimate the perme-
ability decline. Furthermore, the sensitivity analysis of the 
model showed the dominant effect of backwash pressure 
on the stability of the flux. A similar neural network was 
developed by Li and Wang [25] to study membrane foul-
ing for the treatment of sewage wastewater. The degree 
of membrane fouling was represented by the permeate 
flux. Moreover, the ENN model was compared to an MLP 
type model that showed, due to its recursive nature, the 
ENN was more accurate in the predictions. Chen et al. 
[26] and Zhao et al. [27] predicted interfacial energies to  
study membrane fouling in MBR using RBF neural net-
works. The computational time for the Extended Derjaguin–
Landau–Verwey–Overbeek (XDLVO) approach for the cal-
culation of interfacial energy was 3 times higher than the 
RBF model. Cai et al. [28–31] developed multiple wavelet 
neural networks to study the effect of hydraulic retention, 
salinity, and pH on the MBR treatment of marine sew-
age. The different studies showed that the wavelet net-
work was more accurate than the corresponding MLP 
network. Table 1 summarizes the details of the neural 
network developed in the literature for the MBR process.

As mentioned earlier aeration accounts for almost 90% 
of the energy consumption in MBRs. To the best of our 
knowledge, the modeling of the aeration rate and the aer-
ation scheme in MBRs have not been modeled or studied 
using neural networks. The neural network weights can 
be used to study the impact of the aeration scheme, such 
as continuous or pulsed, on the permeate flux. The aera-
tion method has a direct impact on the amount of energy 
consumed. Therefore, the selection of an optimum aeration 
scheme and aeration rate at a specific MLSS concentration 
will lead to a higher permeate flux as well as lower energy 
consumption. In this work, ANNs were used to model MBRs 
with the input variables being: time, aeration scheme, aera-
tion rate, and MLSS and the output variable is the perme-
ate flux. The experiments were performed using a lab-scale 
MBR setup at aeration rates of 0.5, 1, and 1.5 LPM, whereas 
the MLSS concentration was 5, 10, and 15 g/L. Both continu-
ous and pulsed (5 min on 5 min off) schemes were used for 
each set of experiments. An optimal MLP-ANN model was 
selected out of 40 trained networks built based on the exper-
imental data. Finally, the sensitivity analysis of the model 
was conducted by analyzing the weights of the optimal 
network to show the relative importance of each variable. 

2. Materials and methods

2.1. Experimental setup

The schematic diagram of the experimental setup is 
presented in Fig. 1. The bench-scale MBR system consisted 
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of a 5 L bioreactor filled with bioparticle suspension, in 
which a chlorinated polyethylene (CPE) membrane mod-
ule was submerged. The membrane module has an effec-
tive area of 162 cm2 (81 cm2 on both sides) with a nominal 
pore size of 0.4 μm. The membrane module consists of two 
membranes welded onto two acrylonitrile butadiene sty-
rene (ABS) frames supported by two 6 mm plastic spacers. 
The membranes were welded on the ABS frames using an 
ultrasonic welding machine (HiQ LOGIC 1200, Herrmann, 
Karlsbad, Germany). During the experiments, the water 
level in the reactor was monitored and maintained fixed to 
ensure that the concentration of the activated sludge was 
not changed and the membrane was kept submerged in the 
solution. The oxygen in the bioreactor was supplied using 
an air diffuser placed at the bottom of the reactor, which 
was connected to an air compressor. In this study, two aer-
ation schemes, that is, continuous and pulsed at different 
flow rates, have been used. The pulsed aeration was sup-
plied at an intermittent time (5 min on, 5 min off). The per-
meate was collected using a suction pump at 0.1 bar (Gear 
Pump Drive, Model 75211-15, Cole Parmar Instrument) 
controlled by a pressure transducer (CPT 2500, Wika) 
to maintain a constant pressure during all experiments. 

The biomass suspension was obtained from a local 
wastewater treatment plant (Doha South Wastewater 
Treatment Plant in Qatar). The pH of the activated sludge 
was 6.9 ± 0.1 at 21.9°C, and the initial temperature of the 
activated sludge was 25°C ± 2°C. The pH, temperature, and 
dissolved oxygen were continuously measured during the 
experiments using a multimeter (WTW Multi3430, Weilheim, 
Germany). The experimental procedure is given below:

• The initial permeate flux (JPW) was determined using 
pure distilled water by recording the permeate weight 
until a constant flux was obtained. The weight of the per-
meate was measured using a digital balance (EW-11017-
04 Ohaus Ranger™ Scale) connected to a computer.

• The membrane was then submerged in the bioreactor 
and recorded the permeate weight over 2 min inter-
val for 90 mins. The permeate flux was determined 
using Eq. (1).

J
W W
A t
t

m
AS =

−( )0
∆

 (1)

where JAS is the membrane flux, W0 and Wt are the initial 
weight and weight at time t of the permeate, Am is the 
membrane area, and Δt is the time interval.

• The normalized permeate flux for the MBR process 
was calculated using the ratio of permeate flux (JAS) and 
the initial permeate flux using pure water (JPW), that is, 
JAS/JPW.

• After each experiment, the membrane was washed with 
distilled water and the new clean permeate flux was 
measure again.

• The tests were conducted at different MLSS con-
centrations (MLSS = 5, 10, and 15 g/L) and aeration 
rate (AER = 0.5, 1.0, and 1.5 LPM) by repeating steps 1–4.

• Each experiment was repeated several times.

2.2. Neural network model

In this work, a feed-forward neural network, also called 
MLP, was used to model the MBR process. The network 
consists of an input layer, a hidden layer, and an output 
layer. The number of neurons in the input and the output 
layer is equal to the number of input and output variables 
of the model. The hidden layer is composed of hidden 
neurons that develop a relationship between the input 
and output neurons with the help of connection weights 
and biases. The four input variables were time, aeration 
scheme, MLSS concentration, and aeration rate to predict 
the output variable, which was the normalized permeate 
flux. The development of the model is carried out in three 
stages, that is, training, validation, and test stage. As ANN 
is a data-driven model, a total of 792 data points were 
randomly divided into three datasets, which consisted of 
a training data set (80%), validation data set (10%), and 
test data set (10%) for each stage. The description of the 
input and the output variables is given in Table 2. Figs. 2a 
and b show the ANN network architecture used in this 
study and a close-up of the hidden neuron that shows 
the calculation of its output, respectively.

The experimental data were initially normalized to 
avoid numerical overfitting caused by the very small or 
large weights associated with the neurons. The MATLAB’s 
“mapminmax” function (Eq. (2)) was employed for the 
normalization of the input and output variables in the 
range of –1 to 1.

Fig. 1. Schematic diagram of the MBR system.
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where y is the normalized value, xmax and xmin is the 
maximum and minimum value of the variable, respectively.

During the training stage, the training dataset was 
used to develop the neural network model. Initially, the 
weights and biases are assigned to the neurons using the 
Nguyen–Widrow initialization method for the calculation 
of the neuron’s output [33]. For consistency and compar-
ison, the initialization of the weights was fixed for all the 
trained networks, as randomization could lead to incon-
sistent performance [5]. The next step was the optimiza-
tion of the ANN weights to obtain a high-performance 
model. Due to its high performance and convergence 
speed, Levenberg–Marquardt (LM) algorithm was selected 
to train the network and update the weights [23,34,35].  
The neuron’s output for the hidden and output layer is 
evaluated using Eq. (3):

a f a w bij j
k

n

k j ki j ij

j

= ( ) +












=

−( ) −( )

−( )

∑
1

1 1

1

� �  (3)

where aij is the output of the neuron i in the layer j, fj is 
the activation or transfer function of the layer j, ak(j–1) and 
wki(j–1) are the output and the weight of neuron from the 
previous layer, respectively, n(j–1) is the neurons in the hid-
den layer (j–1) and bij is the bias associated with the neuron.

The presence of an activation function enables the 
network to model non-linear systems [5]. In this work, logis-
tic sigmoid (log-sigmoid) function (Eq. (4)) or hyperbolic 
tangent sigmoid (tan-sigmoid) function (Eq. (5)) was used 
in the hidden layer, whereas pure linear (purelin) func-
tion (Eq. (6)) was used for the output layer. The graphical 
representation of the functions is illustrated in Fig. 3.
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f u u( ) =  (6)

The ANN weights are updated by minimizing the error 
between the targeted and predicted output. The learning 
process stops when one of the stopping criteria is reached, 
that is, minimum error, validation checks, etc. The per-
formance of the trained network can be evaluated using 
the indicators listed in Table 3.

During the validation stage, the trained network is 
subjected to an unseen validation data set. This stage 
helps prevent overfitting of the model and serves as a 
stopping criterion. If the validation is unacceptable, the 
training stage continues to update the weights until it is 
satisfied. Lastly, the final stage of the ANN model is the 
test or prediction stage. The test stage does not participate 

 

 

(b) (a) 

Fig. 2. (a) Network architecture of the ANN model and (b) close-up of the hidden neuron.

Table 2
Input and output variable description for the training of the 
ANN model

Variables Value

Input Time, min 86
Aeration scheme Continuous (1)

Pulsed (0)
MLSS concentration, g/L 5

10
15

Aeration rate, LPM 0.5
1
1.5

Output Normalized permeate flux –
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in the training of the network; however, it shows the 
generalization capability of the model when subjected to 
unseen data.

The value of the connection weights of the network may 
not hold any physical significance. Therefore, the weight 
partitioning methodology was used to calculate the rela-
tive importance (Im) of each input variable [36,37]. The rel-
ative importance is given using Eq. (7) to demonstrate the 
sensitivity of the ANN model.
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where m is the number of input neurons, nh the num-
ber of hidden neurons, imj is the absolute value of 

connection weights between the input m and hidden neu-
ron j, and Oj is the absolute value of connection weights 
between the hidden neuron j, and the output.

3. Results and discussion

3.1. Neural network model development

A total of 40 neural network models were trained, and 
their MSE was recorded at each stage. The hidden neurons 
in the network were changed from 1 to 20 neurons, with 
two different activation functions. The output neuron was 
always a pure linear function. Fig. 4a shows the MSE in 
each stage during the ANN modeling with a log-sigmoid 
function as the activation function for a different number 
of neurons. Except for the MSE peaks observed at 1, 8, and 
14 neurons, increasing the number of neurons resulted in 
a decrease in the error. Similarly, Fig. 4b shows the rest 
of the 20 models with a tan-sigmoid function as the acti-
vation function. The error was high for neurons 1–3 in 
the hidden layer. An increase in the number of neurons 
showed a much smoother decrease in error as compared 
to the log-sigmoid function. The selection criteria for the 
optimum model was based on choosing the network with 
the least error in the training stage, without compro-
mising on the efficiency in the validation and test stage. 
Therefore, a 15 hidden neuron network with a tan-sigmoid 
function (topology: 4-7-1) was selected as the optimum 
network, which is also encircled in Fig. 4b.

For the optimum network, the MSE during the train-
ing and updating of the weights in each stage is reflected 
in Fig. 5. The error trend for each stage was very similar, 
which showed that the training data set accurately repre-
sented both validation and test data sets, even though the 
data was divided randomly. The training was stopped 
at 47 epochs when a best validation stage performance 
of 1.188 was reached. Further training resulted in a 
decrease in the validation performance which indicates 
the over-training of the model.

Fig. 6 shows the scatter plot for the predicted and tar-
geted output values in all three stages of the ANN mod-
eling. The correlation coefficient (R-value) for the train-
ing, validation, and test stage was 0.99814, 0.99824, and 
0.99792, respectively. For the complete experimental data, 
the R-value was 0.99816. A positive R-value closer to 1 
shows a high correlation between the predicted and tar-
geted output. This can be observed in Fig. 6 as the majority 
of the data points fall on the best fit line for each plot at 
different stages of modeling. The performance of the net-
work can further be evaluated using MSE, RMSE, R2, and 

   

(b) (c) (a) 

Fig. 3. Graphical representation of the activation functions (a) log-sigmoid, (b) tan-sigmoid, and (c) purelin.

Table 3
Performance indicators to compare the efficiency of the trained 
models

Performance indicator Equation

Mean square error (MSE) MSE = −( )
=
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2

2

1
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1
adjusted = −
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yp,i and yt,i are the predicted and target values of membrane flux, 
respectively; N is the total number of data points; ym is the mean of 
the actual value of water; k is the number of input variables.
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adjusted R2 as summarized in Table 4. The targeted MSE 
was set to zero for the training of the network. The low-
est possible MSE for training, validation, and test stages 
was 1.281, 1.188, and 1.029, respectively. The low-value of 

the RMSE of each stage was comparable and, therefore, 
did not show any evidence of over-fitting. The determi-
nation coefficient (R2) was greater than 0.99 for all the 
cases. This means that more than 99% of the variance in 
the data was explained by the model. Lastly, the adjusted 
R2 was also greater than 99%, which showed that the input 
variables have a significant impact on the model output.

3.2. Impact of input variables on the normalized permeate flux

The aeration process accounts for most of the energy 
consumption in the MBR process. Therefore, it is essen-
tial to optimize the aeration process to minimize the 
energy requirements while maximizing the permeate 
flux. Figs. 7a–c represent the impact of aeration rate and 
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Fig. 4. Simulation summary for the selection of optimum model using (a) log-sigmoid function and (b) tan-sigmoid function.

Table 4
Performance of the optimum network in different stages of 
ANN modeling

Data set MSE RMSE R R2 Adj. R2

Training 1.281 1.131 0.99814 0.996283 0.996265
Validation 1.188 1.090 0.99824 0.996483 0.996465
Test 1.029 1.015 0.99792 0.995844 0.995823
All 1.247 1.117 0.99816 0.996323 0.996305

 
0 10 20 30 40 50

53 Epochs

10 -1

10 0

10 1

10 2

10 3

10 4

M
ea

n 
Sq

ua
re

d 
Er

ro
r  

(m
se

)

Best Validation Performance is 1.188 at epoch 47

Train
Validation
Test
Best10

(M
SE

) 

Fig. 5. Evolution of MSE in all three stages during the training of 
the optimum network.
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scheme on the normalized permeate flux for the different 
MLSS concentrations. The Fig. 7 also show the predictions 
from the ANN model validating against the experimen-
tal data with excellent agreement. The change of normal-
ized permeate flux with time for different aeration rates 
and schemes at 5 g/L MLSS concentration is shown in  
Fig. 7a. The normalized flux increased with an increase in 
the aeration rate from 0.5 to 1.5 LPM for both the pulsed 
and the continuous aeration modes. This is possibly due 
to the turbulence created on the surface of the membrane 
that prevents fouling [14,38]. In the beginning, the normal-
ized flux for the pulsed aeration scheme was higher than 
the continuous scheme. However, the rate of decrease in 
the normalized flux for pulsed aeration was higher than 
continuous aeration. Therefore, by the end of the experi-
ment, the normalized flux for continuous aeration became 
greater than the pulsed aeration scheme. Fig. 7b pres-
ents the change of normalized flux for different aeration 
rates at 10 g/L MLSS concentration. Similar to the previ-
ous case, the aeration rate showed a proportional impact 
on the normalized flux. The increase in the MLSS concen-
tration resulted in a slight decrease in the initial normal-
ized flux. As the MLSS concentration increased from 5 to 
10 g/L, the rate of decrease of the normalized flux over the 
experimental time also increased. As the MLSS concentra-
tion increased more aeration (more oxygen) was required 

to sustain the biomass. The lack of oxygen causes the 
death of the biomass and promotes fouling. Fig. 7c shows 
the change in the normalized flux for different aeration 
rates and schemes at 15 g/L. A high MLSS concentration 
of 15 g/L led to a further increase in the rate of decrease 
of the normalized flux throughout the experiment. At this 
concentration, the only significant impact on the normal-
ized flux was that of the aeration rate. The pulsed and 
continuous aeration scheme showed comparable results.

For each experiment, the average normalized flux is 
listed in Table 5. It can be seen from Table 5 that the aver-
age normalized flux decreases as the MLSS concentra-
tion increases from 5 to 15 g/L. It can be also seen from 
Table 5, that the average normalized flux increases as the 
aeration rate increases from 0.5 to 1.0 LPM. No clear cor-
relation was observed between the impact of the aeration 
scheme (i.e., pulsed or continuous) on the average normal-
ized flux. It was noticed, that the difference of the average 
normalized flux when using the pulsed aeration scheme 
compared to when using the continuous aeration scheme 
ranged between a minimum value of 0.5% at MLSS con-
centration 5 g/L and aeration rate 1.0 LPM to a maximum 
value of 21.1% at MLSS concentration 15 g/L and aeration 
rate 1.0 LPM. The highest average normalized flux was 
63.5% obtained with a continuous aeration rate at 1.5 LPM 
and 5 g/L MLSS. The corresponding average normalized 

Fig. 6. Comparison of the targeted and predicted outputs in different stages of the ANN modeling.
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flux with the pulsed aeration was 62.1% only 2.25% less 
than the continuous aeration scheme. It should be noted 
that the aeration scheme will have a direct impact on the 
energy requirements. Where using a pulsed aeration scheme 
will reduce the energy requirements by half. Therefore, a 
sensitivity analysis was performed to study the relative 
importance of each studied variable. 

3.3. Sensitivity analysis

The optimal weights and biases associated with 
the neurons in the ANN model (4-7-1) are reported in 
Table 6. These weights were used to study the sensitivity 
of the model with respect to each input variable. The rel-
ative importance was calculated using Eq. (7) and illus-
trated as a pie chart in Fig. 8. The order of importance was 
evaluated to be time > aeration rate > MLSS concentration > 
aeration scheme. It can be seen from Fig. 8 that MLSS con-
centration, aeration scheme, and aeration rate had almost 

Table 5
Comparison of average normalized permeate flux for various 
experiments at different aeration rate and scheme

MLSS  
concentration  
(g/L)

Aeration 
rate (LPM)

Average normalized 
flux (%)

Pulsed Continuous

5 0.5 53.9 50.7
1.0 58.7 59.0
1.5 62.1 63.5

10 0.5 40.6 36.0
1.0 45.1 48.3
1.5 60.4 56.6

15 0.5 30.2 31.5
1.0 35.5 43.0
1.5 48.5 45.5
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Fig. 7. Experimental and predicted normalized permeate flux for different aeration rates and schemes at MLSS concentrations 
of (a) 5 g/L, (b) 10 g/L, and (c) 15 g/L. The dots represent the experimental data, whereas the continuous and dashed lines rep-
resent neural network simulation.
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the same importance at 18%, 17%, and 23%, respectively. 
Time was relatively the most important variable (42%) 
which had a negative impact on the normalized flux, as 
time increases, fouling occurs in the membrane which leads 

to the decline of the permeate flux. Taking energy into 
account, the aeration scheme (i.e., pulsed aeration) would 
decrease the energy consumption by half. As the weights 
of MLSS concentration, aeration rate, and aeration scheme 
were close to each other, it should be noted the aeration 
scheme has a higher impact on energy consumption. 

4. Conclusion

The developed ANN model showed excellent agree-
ment with the experimental data with an overall RMSE 
and R2 of 1.117 and 0.9963, respectively. The average normal-
ized flux decreased as the MLSS concentration increased 
from 5 to 15 g/L and it increased as the aeration rate 
increased from 0.5 to 1.0 LPM. No clear correlation was 
observed between the impact of the aeration scheme (i.e., 
pulsed or continuous) on the average normalized flux. 
Analysis of the ANN revealed the order of importance 
was time > aeration rate > MLSS concentration > aeration  
scheme.

Table 6
Optimal values of weights and biases obtained in the training stage of the ANN model

Input weight matrix, IW IW{1,1} Bias vector, b b{1}

{Destination: hidden layer –0.1437 –0.1368 0.2770 –0.1264 {Destination: hid-
den layer}

–1.7448
Source: inputs} 1.2812 0.6457 –1.8222 0.6545 0.2067

–4.4576 0.6730 2.8959 –0.9634 –0.0176
1.4653 0.2406 –1.3937 0.4676 –0.3087
0.8841 1.8539 –1.5731 0.5219 –0.4707

–2.3992 1.4726 1.9476 –0.8672 0.0657
–2.6486 –4.4092 –1.1459 –2.4493 –0.0258
1.1772 3.6587 –4.5651 2.0152 0.1434
2.1834 0.1113 3.5622 –0.4646 –0.0697
3.3130 –0.0798 –0.0944 0.0570 –1.9276

–1.2773 0.4904 –0.2035 0.2683 0.2786
1.1701 1.3307 –0.5737 0.4330 –0.4539
0.8585 –0.1999 –0.2020 –1.1597 –1.7091

–0.9446 4.1958 5.2075 1.0702 0.0852
0.7060 –1.6574 –0.2342 –2.2866 1.1536

Layer weight matrix, LW LW{2,1}T Bias scalar, b b{1}
{Destination: output layer –0.3671 {Destination: 

output layer}
1.9504

Source: hidden layer} –1.2167
2.9207

–0.7894
–0.0418
1.1741

–5.3413
1.4996
1.2389
4.3080

–1.0224
2.4474
2.8002

–3.4759
5.0468
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Fig. 8. Relative importance of each input variable is based 
on the weights in the optimum network.
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