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a b s t r a c t
The dynamic and complex municipal wastewater treatment plant (MWWTP) process should be 
handled efficiently to safeguard the excellent quality of effluents characteristics. Most of the avail-
able mathematical models do not efficiently capture the MWWTP process, in such cases, the data-
driven models are reliable and indispensable for effective modeling of effluents characteristics. In 
the present research, two nonlinear system identification (NSI) models namely; Hammerstein-Wiener 
model (HW) and nonlinear autoregressive with exogenous (NARX) neural network model, and a 
classical autoregressive (AR) model were proposed to predict the characteristics of the effluent of 
total suspended solids (TSSeff) and pHeff from Nicosia MWWTP in Cyprus. In order to attain the 
optimal models, two different combinations of input variables were cast through auto-correla-
tion function and partial auto-correlation analysis. The prediction accuracy was evaluated using 
three statistical indicators the determination coefficient (DC), root mean square error (RMSE) and 
correlation coefficient (CC). The results of the appraisal indicated that the HW model outperformed 
NARX and AR models in predicting the pHeff, while the NARX model performed better than the 
HW and AR models for TSSeff prediction. It was evident that the accuracy of the HW increased 
averagely up to 18% with regards to the NARX model for pHeff. Likewise, the TSSeff performance 
increased averagely up to 25% with regards to the HW model. Also, in the validation phase, the HW 
model yielded DC, RMSE, and CC of 0.7355, 0.1071, and 0.8578 for pHeff, while the NARX model 
yielded 0.9804, 0.0049 and 0.9902 for TSSeff, respectively. For comparison with the traditional AR, 
the results showed that both HW and NARX models outperformed in (TSSeff) and pHeff prediction 
at the study location. Hence, the outcomes determined that the NSI model (i.e., HW and NARX) 
are reliable and resilient modeling tools that could be adopted for pHeff and TSSeff prediction.
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exogenous neural network; pH; Total suspended solids; Autoregressive model
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1. Introduction

Municipal wastewater management is necessary to 
protect our environment from deterioration – as well as to 
improve the water scarcity, which exists in a place where the 
water is insufficient to meet satisfy requirements demands 
[1]. A municipal wastewater treatment plant (MWWTP) is an 
extremely complex and dynamic process due to its intricacy 
of the treatment method. Appropriate action, maintenance, 
and control of MWWTPs are very vital for monitoring envi-
ronmental and ecological health [2]. The total suspended 
solids (TSS) and pH are some of the most significant vari-
ables that govern the efficiency of the effluent characteris-
tics in any treatment plant. Control of pH by the addition 
of some basic chemicals (acidic and base) is an integral part 
of any sewage treatment system as it permits dissolved 
to be separated during the entire treatment process [3,4]. 
Generally, a pH value beyond the prescribed standard 
(6–9) can significantly disturb the ongoing process of bac-
teria and other microorganisms. Hence, it is obvious that 
there is a need to employed and an efficient model that can 
precisely estimate the pH concentration in the system [5].

Due to the importance of management, planning, and 
control of wastewater, the modeling approach in this field 
remains dynamic and active of study. Physical-based and 
data-driven models are the two mains categories applied 
to hydro-environmental studies. The concept of distributed 
white box is applied to physical models to address inter-
action for simulating the hydro-environmental system and 
the physical processes. While optimal links between out-
put and input are acquired on a lumped (black box) model 
that is based on data-driven, in which the physical process 
is neglected [6,7]. Various efforts have been presented to 
improve the accuracy and reliability of the effluent vari-
ables in the field of hydro-environmental studies. Still, no 
individual method has been proved applicable in modeling 
environmental processes [8,9]. With regards to this perspec-
tive, there is a necessity to develop a reliable and efficient 
model that can deal with the dynamics and complexity of 
data of hydro-environmental systems, because, no single 
model proves to be acceptable as the best based on best 
performance [10–13].

Besides, the process of MWWTP has both deterministic 
and stochastic systems. A stochastic model such as autore-
gressive (AR) has been used in modeling and prediction 
of hydrological process, especially time-series process [6]. 
The AR model is widely known for moderation and sim-
plicity among the linear models and is employed in several 
modeling studies [14,15]. Owing to its linear nature, AR 
may not reliably and properly model the possibly intricate 
processes taking place in MWWTP [16].

Based on the established wastewater treatment plant 
studies (WWTP), linear and conventional regression tools 
have been widely used but they have been generally asso-
ciated with low accuracy levels, giving room to the devel-
opment of the artificial intelligence (AI) methods which 
are considered as accurate and nonlinear modeling tools 
[17–19]. Meanwhile, several researchers have established 
different types of AI techniques which have been gradually 
applied for modeling and estimation in various discipline 
of hydrology and environmental engineering to rescue the 

existing traditional models [7,20–23]. For example, Memon 
et al. [4] developed an artificial neural network (ANN) with 
a multi-layer perceptron (MLP) model to forecast the treated 
and untreated pH using 17 measured input parameters in 
the water treatment plant (WTP), Hyderabad (Pakistan). 
The outcomes proved the suitability of MLP in modeling 
the drinking WTP parameters. Verma and Singh [24] stud-
ied the potential of five different data mining approaches 
includes MLP, support vector machine (SVM), regression 
forest (RF), k-nearest neighbors (KNN), and multivari-
ate adaptive regression spline (MARS) to predict daily 
TSS from WWTP located in Des Moines, Iowa. The result 
showed that the MLP model achieved the best prediction 
and therefore outperformed all other models.

Similarly, Granata et al. [25] attempted to simulate 
wastewater quality indicators such as biological oxygen 
demand, chemical oxygen demand (COD), total dissolved 
solids (TDS) and TSS using numerous types of machine 
learning algorithms such as support vector regression 
(SVR) and regression tree (RT). From the outcomes, it was 
observed that both models showed robustness and reliabil-
ity in the prediction. However, a significant performance 
of SVR was observed compared with RT in modeling the 
effluent TDS, TSS, and COD. Gaya et al. [26] applied the 
ANN and Hammerstein-Wiener (HW) models for forecast-
ing the influent turbidity in Tamburawa WTP using differ-
ent input parameters. The results indicated that ANN out-
performs the HW model and could serve as an acceptable 
tool for modeling the turbidity of WTP.

However, the results of prediction produced by some 
of these models still suffered from various imprecision and 
inadequacies despite the growing application and useful-
ness of the AI model. Therefore, it has become necessary 
to design a universally applicable and robotic AI model 
that can be applied in diverse fields. The novelty of this 
study is using nonlinear system identification (NSI) mod-
els to predict the characteristics of the effluents. Hence, 
Nicosia MWWTP is considered as a case study in order to 
implement the ability of data-intelligence approaches such 
as AR and NSI models (i.e., HW and NARX – nonlinear 
autoregressive with exogenous) to predict the TSS and pH 
effluents (TSSeff and pHeff). For this purpose, the modeling 
performance of HW, NARX and AR models was evaluated 
using efficiency indicators and graphical inspection.

2. Material and methods

2.1. Nicosia municipal wastewater treatment plant 
and data collection

It was reported that management, control and planning 
of wastewater exist to be the highest tool for bi-commu-
nal collaboration among the two peoples of Nicosia since 
the 1960s. The new Nicosia MWWTP is a bi-communal 
project serving two different communities between Turkish 
Cypriot and Greek Cypriot. The project was jointly founded 
by the sewage board of Nicosia and the European Union 
(EU) and implemented by United Nations Development 
Programme (UNDP). For sustainable development and 
recycling purposes, more than 300 tons/y will be generated. 
A total of about 10 million m³ of quality effluent can be reused 
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for different agricultural purposes [27,28]. The essential 
components of Nicosia MWWTP are demonstrated in Fig. 1.

The daily measured data obtained from new Nicosia 
MWWTP which includes (pHinf, CODinf, Total-Ninf, NH4–
Ninf, SSinf, and TSSinf) as the input variables and (pHeff, TSSeff) 
as the corresponding output of the model. The normal-
ized data were divided into 75% and 25% for both calibra-
tion and validation, respectively, between 2015 and 2016. 
The validation methods are implemented using different 
approaches; this study employed a holdout approach which 
is known as leave-group-out. In this approach, the data 
randomly assigned to two sets generally named calibra-
tion and validation and can be regarded as another version 
of k-fold cross-validation [29–31].

The concentration of the treated pH and TSS (mg/L) at 
the exit before the discharge to the receiving body is shown 
in Fig. 2. It can be seen from the figure that the time-series 
and box-whiskers plots indicate the profile, range, and the 
extents of outliers in each parameter. The range indicated 
that both pH and TSS values are within the prescribed efflu-
ent standards by Environmental Protection Agency (EPA) 
(pH = 5–9 and TSS = 35 mg/L). Some of the measured daily 
data were outliers, especially for TSSeff. This explains the 
discrepancy between the numbers of samples even though 
the distribution of outliers is not far away from normality 
as in the case of TSSeff. Despite some fitting methods may be 
applied to overcome the problems of outliers and also fill the 
missing data before modeling but in this case, the data may 
be appropriate for modeling since it contained fewer outli-
ers that can be taking care by NSI models and the deviation 
of outliers from the average is insignificant. Table 1 gives 
a summary of the basic descriptive statistics of the data.

2.2. Autoregressive model

The degree of uncertainty and randomness that builds 
the stochastic process of an AR model makes it commonly 
used in time series simulations [6,32,33]. Base on the prior 

variables value knowledge, the AR model forecasts the 
value of the future. Therefore, the AR model for an order 
p is defined as AR(p) and expressed as:

X X Xt t t t= + +…∈− −β β1 1 2 2  (1)

 

 

(b)

Fig. 2. (a) Effluent pH and (b) TSS concentration at Nicosia 
MWWTP.

Fig. 1. Schematic of the Nicosia MWWTP line of treatments.
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where ∈t is white noise with E = (∈t) and VAR(∈t) = σe
2, 

the parameters β1, β2, …, βP are AR coefficients (Hadi 
and Tombul [6]).

2.3. Hammerstein-Wiener model

Hammerstein-Wiener is a model that follows and pre-
cedes a linear dynamic even though it’s a nonlinear block 
(Fig. 3) [26,33–36]. For the identification of a nonlinear sys-
tem, a black box model as HW was developed [37]. The 
combination of parallel and series interconnected non-
linear dynamics and static blocks made up HW as shown 
in Fig. 3 [36]. An appropriate illustration of the HW was 
characterized by an understandable and clear relationship 
between nonlinear and linear systems than the other tra-
ditional ANN. The HW finds and captures simple para-
metric functionality about the system characteristics and 
specifications for nonlinear models [33].

Fig. 3 depicts w(t) = f(u(t)) is a nonlinear function con-
verting input data, x(t) = w(t)B/F shows linear transfer 
function, f and h act on the input and output part of the 
linear block, respectively, the function w(t) and x(t) are 
variables that define the input and output of the linear block.

2.4. Nonlinear autoregressive with exogenous neural network

The NARX neural network (NN) is a nonlinear recur-
rent dynamic neural network, implemented with feedback 
connections and consisting of several layers [37]. This 
NARX model is based on the linear autoregressive with 
exogenous (ARX) model, which is frequently used in time 
series modeling. Therefore, NARX can accept dynamic 
inputs represented by time series sets. This represents the 
main advantage of the NARX NN over feedforward back-
propagation neural networks [38,39]. As recurrent neural 

network possesses the network are quite suitable for nonlin-
ear function approximation and control. The configuration 
of the NARX model in both series and parallel can be shown 
in Fig. 4. The expression for the NARX model is given as:

y t f y t y t y t n u t t u t ny u( ) = −( ) −( ) … −( ) −( ) −( ) … −( )( )1 2 1 2, , , , ,
 

 (2)

where f is a nonlinear function to be approximated, ny and 
nu are the maximum lags input and output entering the 
model, respectively. The predicted output of future value 
y kp
 +( )1  of the series-parallel model is given by:

y k y k y k y k n u k u k np p p p
 +( ) = ∅ ( ) … ( ) … − +( ) ( ) − +( ) 1 1 1, , ; ,

 
 (3)

where ∅ depicts the approximation provided by the 
series-parallel network identifier.

2.5. Model development and performance indicators

For the development of the model, the obtained data 
from the new Nicosia MWWTP were divided into 75% 
for calibration and 25% for validation with a total of 360 
instances. Different methods were reported for input selec-
tion, such as (i) Pearson and Spearman correlation analysis 
to determine the strength and relations between inputs and 
outputs (Table 2) and (ii) auto-correlation function (ACF) 
and the partial auto-correlation (PAC) [40,41]. Subsequently, 
a set of two different models were derived based on 
significant input variables presented in Table 3.

For any time-series modeling identifying the proper 
time lags is a very essential part of selecting the appropriate 

Table 1
Daily values of basic descriptive statistical indices for used data

Parameters Mean Median Standard dev. Minimum Maximum

SSinf (mg/L) 11.04 10.00 4.19 5.00 30.00
TNinf (mg/L) 85.57 85.00 10.24 50.00 121.00
CODinf (mg/L) 911.17 962.50 272.31 100.00 1,463.00
NH4–Ninf (mg/L) 57.41 58.00 7.61 20.00 83.00
pHinf 7.58 7.60 0.23 5.60 8.20
TSSinf (mg/L) 286.82 277.00 118.47 70.00 720.00
pHeff 8.11 8.10 0.27 6.10 8.50
TSSeff (mg/L) 1.24 1.00 1.57 0.10 9.60

Fig. 3. Schematic of Hammerstein-Wiener model.
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model inputs combinations, as such ACF and PAC are used 
(Fig. 5). The correlation between forthcoming and previ-
ous data points is considered as a time series correlation. 
For instance, for a time X, the correlation (R) of the first lag 
(lag 1) is considered as the R between Xt and Xt–1; for the 
second lag (lag 2) is considered as R between Xt and Xt–2. 
On the other hand, the partial correlation is the R-value of 
a parameter with its lag that is yet to be described by the 
R of the lower lags [6]. Data normalization is often used 
as a pre-processing stage prior to the model calibration 
to improve the accuracy and speed of the models [12,18]. 
For this work, the normalization is implemented using 
Eq. (4). Machine learning models and mathematical models 
are evaluated using numerical indicators. The NSI models 
developed in this study were inspected using three statis-
tical metrics, including determination coefficient (DC), root 
mean square error (RMSE), and correlation coefficient (CC) 
(Eqs. (5)–(7)).

Spearman and Pearson’s correlation describes how well 
the relationship between the variables can be described 

using a linear and monotonic function. The strength of 
the correlation is not dependent on the direction or sign. 
A positive coefficient indicates that an increase in the first 
parameter would correspond to an increase in the sec-
ond parameter while the negative correlation indicates 
an inverse relationship whereas one parameter increases 
and the second parameter decreases [42,43]. It can be seen 
from Table 2 that, after performing correlation analysis (R) 
for selecting the initial input variables, a significant R was 
observed between the variables.

y
x x
x x

= + ×
−
−



















0 05 0 95. . min

max min

 (4)

where y is the normalized data, x is the measured data, 
xmax and xmin are the maximum and minimum values of 
the measured data, respectively. The prediction accuracy 
of developed models was assessed by using DC, RMSE, 
and CC [44].

Fig. 4. Architectures of the NARX neural network (Abba et al. [37]).

Table 2
Pearson and Spearman correlation analysis of the parameters

Parameters pHinf CODinf TNinf NH4–Ninf SSinf TSSinf pHeff TSSeff

pHinf 1
CODinf –0.1599 1
TNinf 0.0527 0.1353 1
NH4–Ninf 0.2512 0.1009 0.5037 1
SSinf –0.0051 0.1015 0.3346 0.0919 1
TSSinf 0.0098 0.1726 0.1547 0.0409 0.4852 1
pHeff 0.0252 0.3564 0.1387 0.1475 0.4021 0.0766 1
TSSeff 0.1426 –0.5836 –0.5909 0.0665 –0.6743 0.0800 0.0556 1

Table 3
Developed models with input–output variables

Model output Model Input variables

Effluent pH (pHeff)
M1 (4) SSinf + TNinf + CODinf + NH4–Ninf

M2 (6) SSinf + TNinf + CODinf + NH4–Ninf + pHinf + TSSinf

Effluent TSS (TSSeff)
M1 (4) SSinf + TNinf + CODinf + NH4–Ninf

M2 (6) SSinf + TNinf + CODinf + NH4–Ninf + pHinf + TSSinf
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where N, Yobs,i, Ypre,i, Yobs  and Ypre  are data number, observed 
and predicted data, an average value of the observed and 
computed data for ith values, respectively.

3. Results and discussion

The HW and NARX models were developed using 
MATLAB2019a system identification toolbox in such a 
way that the output and the input nonlinearity configura-
tion on the model have several units equal to 10 as default 
and prewire linear function, the complexity of the model 
increases proportionally with the number of units for 
HW model. Similarly, for the NARX model, specify delay 
and number of terms in neural network regressor are 
chosen according to the input variables. The augmented 
Dickey–Full stationary test was conducted to meet the 
normality assumption of the AR model [45]. Fig. 5 shows 
the variation of ACF and PAC values. It was noticed from 
Fig. 5 that the maximum number of lags (10) employed 
in the first analysis. Both the ACF and PAC are obtained 
to identify the number of the lags to be considered, the 
order of the AR lags was identified by using PAC. For this 
research. The PAC for pHeff and TSSeff was considered as 
4 and 6 lags, and this is because the first 4 lags have the 

highest ACF followed by the next two lags. Therefore, the 
lags considered (4 and 6) is equal to the number of devel-
oped models for each target outcome. For all the models, 
M1 (4) represents the model with four input combinations 
while in the case of AR, it indicates the model with four lags.

Table 4, displays the direct evaluation and compar-
ison between the two models, it can be observed that 
HW and NARX model attained the highest accuracy in 
terms of performance indicators for the estimation of 
pHeff and TSSeff, respectively. Among the model combina-
tion, M2 (6) outperformed M1 (4) in pHeff estimation with 
approximately 9% and 2% for both calibration and vali-
dation, respectively. On the other hand, M1 (4) emerged 
to be the best model for the estimation of TSSeff with an 
average of 4% in both calibration and validation periods. 
The optimal AR model for both the pHeff and TSSeff was AR 
M1 (4) consisting of 4 inputs variables and lag days (Table 
3). In general, NSI models are found to be close to each 
other and the results are better than the linear AR model.

Some graphical presentations were also used to exam-
ine the performance of the HW, NARX and AR models, 
such as time series, radar chart, and Taylor diagrams. 
Figs. 6 and 7 illustrate the time series plots of the observed 
vs. the computed pHeff and TSSeff for the applied models 
in the validation phase. It is clear from Fig. 6 that HW-M1 
and M2 have determination coefficient (DC) = 0.7416 and 
0.8341 for calibration, DC = 0.7139 and 0.7355 for validation 
in pHeff prediction, while Fig. 7 shows the NARX-M1 and 
M2 have DC = 0.9864 and 0.9852 for calibration, DC = 0.9846 
and 0.0.9804 for validation in TSSeff prediction. It is clear also 
from Figs. 6 and 7 that the fitted values of all three mod-
els proved the superiority of 4 lags/input combinations 
(i.e., SSinf + TNinf + CODinf + NH4–Ninf) over six lags/input com-
binations (i.e., SSinf + TNinf + CODinf + NH4–Ninf + pHinf + TSSinf).

A further method for diagnostic analysis of the models 
was employed using the Taylor diagram [46], which can 
highlight the performance efficiency and accuracy of mod-
els based on the observed values. The visual judgment of 
the model performance is provided by a polar plot using 
the Taylor diagram and shows three different (i.e., correla-
tion coefficient, normalized standard deviation, and RMSE). 
Figs. 8a and b provide the Taylor diagrams for pHeff and 
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TSSeff, respectively for the validation period. Taylor’s dia-
gram also confirmed the superiority of the HW model in 
pHeff and NARX model in TSSeff prediction in comparison to 
the AR model.

Furthermore, the prediction accuracy of HW (M1 
and M2) NARX (M1 and M2) and AR (M1 and M2) mod-
els for pHeff and TSSeff, are illustrated through radar-chart 
in Figs. 9a and b, respectively. These plots strengthened 
the justification performance evaluations mentioned in 
Table 4. Figs. 9a and b demonstrate the radar chart shows 
the different varieties of CC in both calibration and valida-
tion. From these figures, it can be seen that the 0.6044 and 
0.9902 are the lowest and highest value of CC obtained from 
all the models in the validation phase. As it was reported 
in several research that the high-value of CC attributes in 
providing the best performing model [34].

The exploratory analysis for HW NARX and AR mod-
els can also be justified and better visualized through box-
plots (Fig. 10). A powerful graphical Boxplot overview 
of data representation gives the summary of the data set, 
based on the mean value, the closest to the all observed val-
ues to the models are given according to Fig. 10, the plot 
contained (box and whisker median, mean and staples). 
According to the plot, the extent of spread values between 
the predicted and observed models indicates that the pHeff 
(HW-2) and TSSeff (NARX-M1) ranked the best model.

To concur the finding of the current research were com-
pared with the several existed studies on multiple param-
eter prediction of wastewater treatment plant (WWTP) 
by employing numerous data-driven models [24,35,47,48] 
examined the comparative potential of MLP, KNN, MARS, 
SVM, and RF for predicting the TSS from WWTP set in Des 
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Moines, Iowa. Results reveal the MLP model performed bet-
ter with minimum value mean absolute error (MAE = 38.88) 
and mean relative error (MRE = 16.15) than the other model. 
Abba et al. [37] predicted multi-parameters such as hard-
ness (mg/L), turbidity (μS/cm), pH and suspended sol-
ids (SS; mg/L) of Tamburawa-WWTP, Nigeria by utilizing 

simple generalized regression neural network (E-GRNN), 
E-HW, E-NARX, and least square support vector machine 
(E-LSSVM) models and different nonlinear ensemble 
models, that is, E-GRNN, E-HW, E-NARX, and E-LSSVM. 
They found that HW model outperformed in hardness 
(RMSE = 0.0254–0.1208 mg/L), turbidity (RMSE = 0.0002–

Table 4
Results of NSI and AR models for pHeff and TSSeff prediction at Nicosia MWWTP

Effluents 
parameter

Models Calibration Validation

DC RMSE CC DC RMSE CC

NARX-M1 0.6663 0.0136 0.8162 0.6293 0.0438 0.7932
HW-1 0.7416 0.0112 0.8611 0.7139 0.0322 0.8449

pHeff AR-M1 0.4187 0.0144 0.6471 0.3981 0.096 0.6310
NARX-M2 0.5699 0.0143 0.7549 0.4812 0.0223 0.6936
HW-M2 0.8341 0.0130 0.9133 0.7355 0.1071 0.8578
AR-M2 0.3918 0.0144 0.6259 0.3654 0.095 0.6044
NARX-M1 0.9864 0.0083 0.9932 0.9846 0.0093 0.9923
HW-M1 0.9540 0.0096 0.9762 0.9511 0.0073 0.9753

TSSeff AR-M1 0.9550 0.0093 0.9772 0.9306 0.0212 0.9647
NARX-M2 0.9852 0.0083 0.9926 0.9804 0.0049 0.9902
HW-M2 0.9758 0.0084 0.9878 0.9659 0.0097 0.9828
AR-M2 0.9549 0.0093 0.9772 0.9199 0.0209 0.9591

 

(b)

(a)

Fig. 9. Radar chart for CC in both calibration and validation phase for (a) pHeff and (b) TSSeff.
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0.0958 μS/cm), and SS (RMSE = 0.0192–0.0275 mg/L) prediction, 
while E-GRNN model in hardness (RMSE = 0.0085 mg/L), 
turbidity (RMSE = 0.0663 μS/cm), pH (RMSE = 0.0002) 
and SS (RMSE = 0.0017 mg/L) at Tamburawa-WWTP.

It is worth mentioning that, AR parametric coefficient 
algorithms were obtained using nonlinear least squares 
with the automatically chosen line search method. As in the 
case of the ARIMA model which has been one of the most 
popular models for time series forecasting analysis which 
is known as the Box–Jenkins model. As mentioned above 
AR is one of the major categories of ARIMA. The order of 
AR follows: [na nb nk] = [1:10 1:10 1:10]. However, for HW 
the major confidence are nonlinearity piecewise linear and 
number of units initially = 10, while NARX was built based 
on regularization weighting = 1.0, rebustification limit = 0.0, 
and regularization trade-off = 0.0 as the main adjusted 
coefficients. Overall, the results suggested the present 
study endorse that the applied NSI models, especially the 
HW and NARX, for pHeff and TSSeff prediction are robust 
and truthful model than the AR model for the study site.

4. Conclusion

A nonlinear system identification model have been 
found a promising tool for the prediction of highly nonlin-
ear processes. The prime goal of this paper was to discover 
and employed two different NSI models namely HW and 
NARX neural networks, and one classical linear model, that 
is, AR for the prediction of effluents characteristic of TSSeff 
and pHeff from the new Nicosia municipal wastewater treat-
ment plant. The performance criteria, that is, DC, RMSE, 
and CC were used to evaluate the results yielded by these 
models during calibration and validation periods. The pre-
diction results demonstrated that the HW model outper-
formed NARX and AR models in predicting the pHeff, while 
for TSSeff NARX model performed better than the HW and 

AR models. It was evident that the prediction accuracy of 
the HW increased averagely up to 18% with regards to the 
NARX model for pHeff. Likewise, the TSSeff performance 
increased averagely by up to 25% with regards to the HW 
model. Also, the comparison with the traditional AR, reveals 
that both HW and NARX models performed more accu-
rately in pHeff and TSSeff prediction at the study site. Hence, 
the outcomes determined that the NSI model (HW and 
NARX) are reliable modeling tools that could be adopted 
for the prediction of pHeff and TSSeff, respectively. The results 
also suggest that other nonlinear techniques should also be 
considered to enhance the prediction accuracy of the model.
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