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a b s t r a c t
It is essential that water resource management plans require explicit links across different spatial 
scales in a single watershed. This study aimed to identify existing gaps between sub-basin and 
watershed management strategies using a watershed simulation model soil and water assess-
ment tool (SWAT). The SWAT was calibrated and validated at the upper and middle regions of the 
Yeongsan River in Korea using past weather inputs from 2012 to 2014. The simulation outputs from 
2014 used as a reference were compared to those with future weather scenarios in 2032 produced 
from a regional climate model (RCM) such as RCM 2.6, 4.5, 6.0, and 8.5. We found that the calibra-
tion and validation results agreed well with the observed data, yielding Nash–Sutcliffe efficiency 
values more than 0.72 for daily streamflow as well as for monthly sediment and total phospho-
rus (TP) loads at the final watershed outlet. However, all projected weather data led to a signifi-
cant difference in streamflow only at the sub-basin level, while all three variables at the watershed 
level varied significantly from scenario to scenario. These imply that water resource management 
plans determined at the watershed scale may not be suitable for those at the sub-basin scale, calling 
for a more refined search that harmonizes both management decisions.

Keywords:  SWAT; Regional Climate Model; Future weather scenarios; Climate change; Watershed 
management plans

1. Introduction

Watershed management provides a framework for 
restoring impaired water resources as well as promot-
ing the sustainable use of watershed resources and func-
tions [1,2]. Watershed management plans were developed 
and adjusted through iterative process so that continu-
ous improvements in water quality and quantity should 
be attained [1,2]. Monitoring data compiled from vari-
ous watershed management programs helped not only 

characterize pollution hotspots and priority pollutants, but 
also assess the effectiveness of pollution reduction strate-
gies during the repeated management cycles. Watershed 
or water quality models also assisted in the watershed 
planning process by estimating pollutant load reductions 
in response to a series of management options and antic-
ipated changes of environmental conditions [3]. Those 
models were particularly valuable in capturing water flow 
and solute transport which varied widely across time and 
space, and thus, were proposed for various simulation 
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studies for both ungauged and gauged watersheds [4]. 
Using either statistical analysis or mathematical mod-
els, it is important that management plans for smaller 
watersheds support the strengthening of those activities 
for large basins.

The soil and water assessment tool (SWAT) is one of 
simulation tools extensively adopted in prioritizing avail-
able management options in a given watershed, includ-
ing total maximum daily load (TMDL) development [5]. 
For example, Aghakhani et al. [5] examined the relation-
ship between land use activities and surface runoff using 
the SWAT, and found that a combination of land manage-
ment practices resulted in reduction of surface runoff by 
6%–22.3%. In addition, adaptation strategies for future 
weather changes were studied with several SWAT applica-
tions [6–8]. Specifically, Ahmadi et al. [6] found that eco-
logical health and drinking water supplies were vulnerable 
to the projected increase in pollutant fluxes. The study of 
Carvalho-Santos et al. [7] revealed that the construction 
of a new reservoir only addressed the shortage of water 
supply in the target watershed under current climate con-
ditions rather than under future climate conditions. Babur 
et al. [8] showed that (two) future climate projections led 
to the increasing number of days with high streamflow, 
but a decrease in median streamflow. There were some 
studies that addressed the isolated and combined effects 
of those influencing factors (e.g., climate and land use 
changes) on streamflow and pollutant fluxes using SWAT 
[9,10]. In other studies, the SWAT was often employed to 
evaluate the effectiveness of best management practices 
(BMP) strategies against changing environmental condi-
tions such as land use and climate alteration [11–13]. Some 
earlier studies also provided evidence for the validity and 
reliability of the SWAT model in the TMDL analyses [3,14].

This study aimed to identify the consistency of manage-
ment strategies between small and large drainage basins 
using the SWAT model, as compared to previous studies. 
This is because even though integrated watershed man-
agement emphasizes proper coordination of management 
plans at different spatial scales, these are generally ignored 
by many modeling studies. Using the SWAT model, specific 
objectives were (1) to determine the optimal parameter set 
in the selected watershed, (2) to produce baseline simula-
tion results for three variables of interest, and (3) to com-
pare new prediction results with future weather inputs to 
those obtained during the baseline period. We hope that 
the proposed mythology will facilitate integration efforts 
and implementation efficiency of watershed management 
plans at both various spatial and temporal scales.

2. Materials and methods

2.1. Study area

The upper and middle regions of Yeongsan (YS) 
River watershed were selected as the target study area 
for simulation of water quantity and quality (Fig. 1). The 
YS River watershed, which covers an area of 3,371 km2, is 
located in the south western part of Korean Peninsula and 
runs from Damyang (upstream) through Gwangju and 
Naju (midstream) eventually to the Yellow Sea in Mokpo 

(downstream) [15]. Out of the entire watershed area, the 
selected watershed has a drainage area of 2,938 km2. The 
watershed experienced chronic pollutant inputs from inten-
sive agricultural activities. In fact, land use over the whole 
watershed is dominated by 50% of forest, 29% of crop-
land, 12% of urban area, and 9% of water [16]. According 
to historical rainfall records for the period 1966–2014, the 
watershed received an average of 1,301 mm of precipita-
tion annually [17]. To prepare the weather input files for 
simulation, the daily rainfall data was obtained at nine 
stations (i.e., eight precipitation gauges plus one regu-
lar weather station) from 2012 to 2014. In contrast, the air 
temperature, wind speed, and relative humidity were 
also collected from the regular weather station (Fig. 1). 
The compiled data represented the current local weather 
conditions, and served as a baseline in subsequent simu-
lations with future weather scenarios (section 2.2 – com-
pilation of future weather inputs). The Sapo monitoring 
station, which was routinely monitored by the Ministry 
of Land, Infrastructure, and Transport of Korea, was 
selected as the final outlet of the selected watershed (Fig. 1).

2.2. Compilation of future weather inputs

The future climate scenarios for 2014–2032 simulated 
with the regional climate model (RCM) HadGEM3-RA were 
compiled from the climate information portal of Korea 
[18]. The standard HadGEM3-RA product has 12.5 km 
spatial resolution, and contains four projection scenarios 
(RCM 2.6, 4.5, 6.0, and 8.5) depending on the radiative forc-
ing levels from lowest to highest. As described in the cur-
rent weather inputs, air temperature, precipitation, wind 
speed, and relative humidity were provided as inputs to 
the simulation model. Note that the RCM provides a sin-
gle value (for individual parameters) covering an area of 
approximately 160 km2. Each value is thus assigned to one 
or multiple outlets of individual sub-basins, which make 
up the selected watershed (section 2.3 – SWAT model set 
up) within an evenly spaced grid. Before introducing the 
future weather scenarios into the simulation model, a bias 
correction for the RCM data was made to match the obser-
vation data at the nine precipitation stations in the selected 
watershed [19,20]. The basic assumption behind the bias 
correction method is that the correction algorithm and its 
parameterization determined at the current weather condi-
tions are identically maintained in the future weather sce-
narios. A dual approach combining local intensity scaling 
and power transformation enables correction of the mean, 
variance, and frequency of the precipitation simultaneously. 
The remaining parameters, including temperature, wind 
speed, and humidity were adjusted by a linear scaling cor-
rection. More detailed information on the bias correction for 
individual parameters is available in Appendix A [21].

2.3. SWAT model set up

The selected watershed was delineated based on both 
the digital elevation model (DEM) and the stream network 
generated from the built-in stream definition function in the 
SWAT. This resulted in 25 sub-basins in the selected water-
shed after the automatic delineation process. Individual 
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sub-basins were then further segmented into one or multi-
ple hydraulic response units (HRU) by adjusting the ratio 
of land use, soil class, and slope. A 5% threshold value 
was adopted for classifications of land use, soil, and slope 
when further partitioning sub-basins to HRU. Note that a 
single slope option for each HRU is used during the anal-
ysis because the YS watershed consists of fairly flat land. 
This, in turn, appears to reduce complexity and execution 
time related to hydrologic and water quality processes in 
the model. The simulation period of the SWAT model using 
the current weather inputs was set to 3 years (2012–2014), 
but specifically calibrated for the years 2012–2013, and val-
idated for the period of 2014. The SWAT simulation was 
intended to produce outputs for daily streamflow as well 
as monthly sediment and total phosphorus (TP) loads.

2.4. Sensitivity analysis

Sensitivity analysis prioritizes the key parameters that 
are influential to the model output [22,23]. Sensitivity 
assesses the response of an output variable to a change in 
parameters. Out of various sensitivity analysis techniques, 
we specifically adopted the Latin hypercube one factor at 
a time (LH-OAT) method which was widely applied for 
global sensitivity analysis in surface and subsurface mod-
els. The LH-OAT combined the OAT design with Latin 
hypercube (LH) sampling by accepting the LH samples as 
initial points for an OAT design. The LH sampling method 
was carried out based on the Monte Carlo simulations, but 

employed a successively hierarchical sampling approach 
for the efficient estimation of output statistics [24]. A 
detailed procedure for the LH sampling and OAT design 
is described in van Griensven et al. [25] and Morris [26]. 
The change in model output can be attributed to the change 
of input parameter(s) by means of the partial effect Si,j, 
which is given by:
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where Si,j represents a partial effect for parameter ei around 
an LH point j. f is the fraction by which the parameter ei 
is changed (a predefined constant). SSE refers to the sum 
of squared errors. Note that considering p parameters, 
(p + 1) model runs should be executed during the sensi-
tivity analysis. The effects of individual parameters are 
quantified by averaging the partial effects of each loop 
for all LH points. Then, their priority is determined based 
on the relative contribution to the model output. Note 
that we specify the acceptable parameter variation range 
for the sensitivity analysis according to the SWAT input/
output document [27].

2.5. Performance assessment and data analysis

As described earlier, the SWAT model was calibrated 
and validated for daily streamflow as well as monthly 

Fig. 1. Geographical location of the study area: the upper and middle regions of the Yeongsan River watershed.
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pollutant loads with the observed data at the main outlet 
in the selected watershed. The calibration for streamflow 
as well as sediment and TP loads was done only using a 
set of parameters recommended from the sensitivity anal-
ysis. The performance of the SWAT model was assessed in 
terms of the coefficient of determination (R2), the Nash–
Sutcliffe efficiency (NSE), and the root mean square error 
(RMSE). The differences between baseline simulation 
(under the current weather input in 2014) and new predic-
tions (under the future weather input in 2032) were quanti-
fied in terms of the average annual rate of change for three 
target variables. The nonparametric Kruskal–Wallis test 
was specifically adopted to assess statistical significance in 
these outputs among the sub-basins in reach RCM scenario 
as well as among RCM scenarios at the watershed level.

3. Results and discussions

3.1. Sensitivity analysis results

Table 1 provides a list of calibration parameters for 
three target variables (i.e., streamflow, sediment, and TP) 
and their optimized values in the SWAT model [28]. Note 
that the selected parameters are recommended from the sen-
sitivity analysis, and are then ranked in descending order 
of importance for each variable. It was shown from the 
table that seven parameters out of a total of 27 were found 
to have a significant influence on the output streamflow. 
Specifically, the input parameter CN2, which indicated the 
initial runoff curve number for moisture condition II, had 
the highest sensitivity. The parameters ALPHA_BF and 
CH_K2, which were related to the processes of baseflow 

and channel routing, were ranked second and third, respec-
tively. In contrast, four parameters played an important 
role in calculating the amount of sediment in the SWAT 
model. The parameter SPCON, which was involved in 
the channel sediment routing process, was ranked first. It 
was followed by PRF and CH_COV which were used as 
the adjustment factor for sediment routing and channel 
cover factor, respectively. Finally, seven parameters with 
high sensitivity were involved in the computation of TP. 
The highest ranks were assigned to EROGRP, BIOMIX, and 
PSP. The three parameters are associated with the phos-
phorous enrichment ratio for sediment loading, biologi-
cal mixing efficiency, and phosphorous availability index, 
respectively. Note that all of the calibrated parameter sets 
are frequently reported in numerous sensitivity analyses 
in the SWAT literature as well as are within the range of 
allowable values in the user manual.

3.2. Calibration and validation results

The SWAT model was successfully calibrated and val-
idated for the selected watershed. Fig. 2 compares the 
predicted and observed values for streamflow as well as 
sediment and TP loads at the watershed outlet during the cal-
ibration and validation periods. The predictive performance 
of the model for streamflow (Fig. 2a) as well as sediment 
and TP loads (Figs. 2b and c) is assessed in terms of NSE, R2, 
and RMSE separately for each period. As shown in the Fig. 
2, the SWAT model showed better performance during cali-
bration than during validation with respect to NSE (for sedi-
ment and TP loads). A slight performance improvement was 
observed during the validation period in terms of R2 rather 

Table 1
Optimal set of input parameters determined during the SWAT calibration

Variables Processes Input 
parameters

Acceptable rangesa Calibrated 
values

Streamflow

Hydrological cycle (for surface runoff) CN2 −25.00–25.00 –0.95
Hydrological cycle (for groundwater) ALPHA_BF 0.00–1.00 0.99
Channel processes (for channel water routing) CH_K2 0.00–150.00 2.24
Hydrological cycle (for surface runoff) SURLAG 0.00–10.00 8.34
Channel processes (for channel water routing) CH_N2 0.00–1.00 0.45
Hydrological cycle (for groundwater) GWQMN −1,000.00–1,000.00 586.05
Hydrological cycle (Evapotranspiration) ESCO 0.00–1.00 0.64

Sediment

Channel processes (for channel sediment routing) SPCON 0.0001–0.01 0.001
Channel processes (for channel sediment routing) PRF 0–2.0 0.50
Channel processes (for channel sediment routing) CH_COV −0.001–1.00 0
Sediment (for sediment erosion) USLE_P 0.10–0.90 0.10

Total phosphorus (TP)

Nutrients (for phosphorous cycle) ERORGP 0.00–5.00 0.55
Nutrients (for phosphorous cycle) BIOMIX 0.0–1.00 0.10
Nutrients (for phosphorous cycle) PSP 0.20–0.60 0.60
Channel processes (for channel nutrient routing) BC4 0.10–0.70 0.10
Nutrients (for phosphorous cycle) GWSOLP 0.00–1.00 0
Channel processes (for channel water quality indices) RHOQ 0.05–0.50 0.05
Channel processes (for channel water quality indices) MUMAX 1.00–3.00 1.00

aNote that the acceptable range of input parameters were determined according to the SWAT input/output document [28].
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than RMSE (for sediment and TP loads). However, in the case 
of streamflow, there were no significant differences in the 
overall performance of the model during both periods. Note 
that the values of NSE and R2 approaching one indicates a 
perfect match between the predicted and observed ones, 
whereas RMSE is close to zero in such a case. A time series 
graph also revealed that the predicted results were generally 
in good agreement with the observed data during both peri-
ods, except for the monsoon season which led to heavy rain-
fall every year. Accordingly, we used the successful valida-
tion results in 2014 as a baseline for comparison with those 
obtained from future climate projections in 2032. The SWAT 
outputs calculated for streamflow, sediment loads, and TP 
loads at the sub-basin level in water year 2014 are visualized 
in Figs. 3a–c, respectively. Fig. 3 shows that streamflow and 
two pollutant loads generally become larger in downstream 

areas than upstream areas, albeit not increasing monotoni-
cally from upstream to downstream. These implied why 
hydrology and pollutant transport processes should be 
carefully assessed at the sub-basin scale under different 
environmental conditions such as new weather scenarios.

3.3. Impact of climate change on watershed processes

3.3.1. Impact on streamflow

Fig. 4 illustrates future changes in streamflow at 25 
individual sub-basins predicted under different RCM sce-
narios, 2.6, 4.5, 6.0, and 8.5. The color bar indicates the per-
cent change in the mean annual streamflow between base-
line condition (in 2014) and a series of new predictions (in 
2032). It was found that streamflow increased dramatically 

Fig. 2. Time series plots of observed and predicted variables in the final watershed outlet during the calibration and validation 
periods: (a) streamflow, (b) sediment loads, and (c) TP loads. Note that the black bar in (a) indicates the average daily precipitation 
estimated from a series of weather stations in the target watershed (Fig. 1).
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under RCM 6.0 scenario (Fig. 4c), whereas RCM 4.5 projec-
tion rather resulted in a considerable reduction of stream-
flow in all sub-basins (Fig. 4b). In fact, streamflow at 
a few upstream sub-basins in RCM 6.0 was more than 
double that of water year 2014. In the case of RCM 4.5, 
streamflow was decreased by half at maximum. Similar 
to the prediction result with RCM 6.0, both RCM 2.6 and 
8.5 scenarios increased the output streamflow, although 
RCM 2.6 was more influential than RCM 8.5 (Figs. 4a and 
d). These results implied that streamflow in the target 

watershed was highly sensitive to (changing) weather con-
ditions, but did not always increase linearly according to 
the radiative forcing levels.

3.3.2. Impact on sediment loads

The influence of RCM projections on the sediment 
loads at individual sub-basins is displayed in Fig. 5. 
In Fig. 5, the range of the color bar is set to vary approxi-
mately from –70% to 430% in terms of the percent change. 

Fig. 3. Baseline evaluation for (a) streamflow, (b) sediment loads, and (c) TP loads at 25 sub-basins for water year 2014 using SWAT.

Fig. 4. Percent changes (%) in the predicted streamflow at the sub-basin scale under different future weather inputs in 2032: 
(a) RCM 2.6, (b) RCM 4.5, (c) RCM 6.0, and (d) RCM 8.5.
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As observed in streamflow, the mean annual sediment 
loads increased, to a large extent, throughout the sub-ba-
sins for RCM 6.0 scenario (Fig. 5c), when comparing other 
prediction results. But at the same time, RCM 6.0 also led 
to a considerable reduction of sediment loads in a few 
downstream sub-basins. In addition, sediment loads were 
projected to vary between –70% and 110% under three 
remaining scenarios, RCM 2.6, 4.5, and 8.5. The decreas-
ing pattern of sediment loads in individual sub-basins for 
RCM 2.6 was, in particular, quite similar to that of RCM 
8.5 (Figs. 5a and d). Only, a small number of sub-basins 
appeared to show an increase in sediment loads under 
these two scenarios, as opposed to those in RCM 6.0. 
However, the decrease in sediment loads throughout the 
sub-basins was more pronounced in RCM 4.5 than in other 
scenarios (Fig. 5b). All these results revealed that RCM 
projections resulted in a significant change of sediment 
loads at the sub-basin level, but the extent of these changes 
was largely dependent on the characteristics of individ-
ual sub-basins such as topography, land use, agricultural 
activities, etc. We believe that a detailed discussion on the 

properties of individual sub-basins is out of the scope of  
this study.

3.3.3. Impact on TP loads

Fig. 6 exhibits the change in TP loads at the sub-ba-
sin scale modulated by four RCM scenarios. Note that the 
range of the color bar goes from –80% and 190%. Similar 
to those observed in streamflow and sediment loads, the 
(percent) change in TP loads at individual sub-basins was 
high in RCM 6.0 (Fig. 6c). Specifically, TP loads rose more 
than 50% in most of the sub-basins. However, the influ-
ence of both RCM 2.6 and 8.5 on the mean annual TP loads 
appeared to be quite similar to each other (Figs. 6a and 
d). In both scenarios, the percent change in TP loads was 
projected to range from –40% to 60% throughout the sub- 
basins. Also, an inverse relationship was observed between 
TP loads and RCM 4.5, where percent change estimated 
for individual sub-basins generally fell below 0% (Fig. 6b). 
In accordance with simulation results for other output vari-
ables, these results demonstrated that TP loads increased or 

Fig. 5. Percent changes (%) in the predicted sediment loads at the sub-basin scale under different future weather inputs in 2032: 
(a) RCM 2.6, (b) RCM 4.5, (c) RCM 6.0, and (d) RCM 8.5.
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decreased heterogeneously across the sub-basins according 
to a combination of internal (i.e., the drainage characteris-
tics) and external factors (i.e., the new weather inputs).

As a final step, we adopted the Kruskal–Wallis test, 
which allowed the one-way ANOVA test for non-normally 
distributed data, to examine the difference in three tar-
get variables among multiple groups, that is, the outputs 
among the sub-basins in each RCM projection and those 
at the entire watershed among all RCM scenarios (Table 2). 
From the table, it was found that there was no difference 
in sediment and TP loads among the sub-basins, whereas 
streamflow at individual sub-basins was largely affected 
by the new weather inputs, regardless of the radiative forc-
ing levels. These results indicated that streamflow at the 
sub-basin level was more sensitive to the weather scenar-
ios than sediment and TP loads which received indirect 
contributions through watershed processes controlling 
their fate and transport from weather events. However, 
streamflow as well as sediment load and TP loads at the 
watershed level were shown to vary significantly among 
RCM scenarios, implying that all three variables were 
susceptible to climate change impacts. These two results 

highlighted that there existed large discrepancies between 
watershed-wide and sub-basin management recommen-
dations. For example, a watershed-scale management 
approach may be designed to minimize the effect of cli-
mate change on both water quantity and quality, whereas 
only water quantity aspect is taken into consideration at the 
sub-basin scale, according to different statistical test results. 
Therefore, it is essential to double-check simulation out-
puts at different spatial scales not only to fully account for 
the effects of new environmental conditions (such as RCM 
projections) on variables of interest, but also to implement 
proper actions in the watershed management planning  
process.

4. Conclusion

This study assessed water quantity and quality res-
ponses of the Yeongsan River Watershed in Korea with 
intensive agricultural production to changes in future local 
weather using SWAT. A series of simulations were per-
formed using baseline (successfully validated in 2014) and 
new weather conditions (adopting four RCM scenarios, 

Fig. 6. Percent changes (%) in the predicted TP loads at the sub-basin scale under different future weather inputs in 2032: 
(a) RCM 2.6, (b) RCM 4.5, (c) RCM 6.0, and (d) RCM 8.5.
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RCM 2.6, 4.5, 6.0, and 8.5, in 2032). The simulation out-
puts were then analyzed using a non-parametric Kruskal–
Wallis test to identify a major contributor to variation of 
three target variables (i.e., streamflow as well as sediment 
and TP loads) at both watershed and sub-basin levels. 
The following conclusions were drawn in this study:

• Sensitivity analysis enabled proper correction of a series 
of key input parameters involved in computation of 
three target variables. Seven, four, and seven parame-
ters adjusted for (daily) streamflow, (monthly) sediment 
loads, and (monthly) TP loads were within the reference 
ranges for the model, and achieved good performance 
with Nash–Sutcliffe efficiency values as low as 0.72 
during calibration and validation.

• Providing additional future weather inputs to the 
model resulted in significant variation in three vari-
ables at the target watershed. The degree of variation 
in streamflow as well as sediment and TP loads var-
ied depending on RCM scenarios. However, the sta-
tistical results found that no significant difference was 
observed in sediment and TP loads among 25 sub- basins 
according to each RCM scenario, whereas all three 
variables at the watershed scale differ substantially 
among the scenarios.

This discrepancy raises questions about the consistency 
of watershed management plans at different spatial scales 
and requests careful consideration on pollution mitigation 
strategies for area of concern.

Symbols

T — Temperature
W — Wind speed
H — Relative humidity
P — Precipitation
μ — Mean
σ — Standard deviation
CV — Coefficient of variation
d — Within daily interval

Sub-/superscripts

RCM,f — HadGEM3-RA simulated 2006–2100
RCM,h HadGEM3-RA simulated 1979–2005

obs Observed
M Within monthly interval
th Threshold level
* Final bias-corrected
*1,2 Bias-corrected in an intermediate step
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Appendix A

The linear scaling method minimizes the difference 
between the average observation and simulation in a data 
period [21]. Precipitation was corrected with a ratio of the 
mean observations and simulations over the whole historical 
period (1979–2005). Other climatic data were corrected using 
the difference of the mean observations and simulations 
during the whole historical period (1979–2005). The monthly 
linear scaling of RCM outputs with monthly correction val-
ues should be consistent with the observed monthly mean 
values by definition. The RCM climate data are revised with 
the difference of monthly mean observations and simulations  
as follows:

T d T d T d T dh h m m hRCM RCM obs RCM, , ,
* ( ) = ( ) + ( )( ) − ( )( )µ µ  (1)

T d T d T d T df f m m hRCM RCM obs RCM,
*

, ,( ) = ( ) + ( )( ) − ( )( )µ µ  (2)

H d H d H d H dh h m m hRCM RCM obs RCM,
*

, ,( ) = ( ) + ( )( ) − ( )( )µ µ  (3)

H d H d H d H df f m m hRCM RCM obs RCM,
*

, ,( ) = ( ) + ( )( ) − ( )( )µ µ  (4)

W d W d W d W dh h m m hRCM RCM obs RCM,
*

, ,( ) = ( ) + ( )( ) − ( )( )µ µ  (5)

W d W d W d W df f m m hRCM RCM obs RCM,
*

, ,( ) = ( ) + ( )( ) − ( )( )µ µ  (6)

A combination of local intensity scaling and power 
transformation scaling corrections for precipitation takes 
the following steps:

Firstly, a precipitation threshold (Pth) is specified to 
redefine precipitation under Pth to dry days with 0 mm of 
precipitation. The threshold of precipitation is set to 0.5 mm:
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Finding bm must satisfy:
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Then,
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Intermediary precipitation is then corrected with a ratio 
of monthly mean intermediary precipitation and observation:
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