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a b s t r a c t
The desorption ability of metal-loaded resins is the key factor limiting the application for fluoride 
removal. In this study, the desorption behaviors of fluoride adsorbed by an aluminum-loaded che-
lating resin (D751) were investigated at relatively low liquid/solid ratios. The feasibility of recover-
ing fluoride from the desorption solution was determined by the experiments and the thermody-
namic modeling. The results showed that NaOH was a more suitable desorption reagent than 
HCl. The desorption ratio of fluoride surpassed 80% after 30 min in 2.0 mol/L NaOH. The fluoride 
concentration of the desorption solution was 2.8–12.8 g/L with a F/Al molar ratio of 1.0. The F/Al 
molar ratio and reaction pH were the main factors determining the recovery of fluoride from the 
desorption solution. More than 80% of the fluoride was recovered from the desorption solution as 
cryolite products after the addition of HF and HCl. The residual fluoride concentration decreased 
from 3,508.2 mg/L to 401.8–482.5 mg/L at a F/Al molar ratio of 5.0–6.0 and at pH 6.0.
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1. Introduction

Fluoride is a major contaminant worldwide as  fluoride- 
containing wastewaters are produced by the semiconductor, 
fluorine chemical, aluminum electrolysis, and photovoltaic 
industries [1–3]. Excess fluoride in wastewater has seri-
ous detrimental effects on the environment and human 
beings [4]. However, fluorite is a precious non-metallic ore 
that is currently in the midst of a worldwide shortage [5]. 
Therefore, the efficient removal and recovery of fluoride 
from wastewater would not only benefit the environment 
but would also be of great economic value.

Chemical precipitation and coagulation are commonly 
used treatment methods for wastewater with high fluoride 
content [6,7]. This approach produces large amounts of 
non-reusable, low-quality sludge that is expensive to dis-
pose of. To recover qualified calcium fluoride or cryolite 

products, crystallization reactors are developed and used 
for chemical precipitation [8,9]. However, crystallization 
and chemical precipitation are not suitable for the treat-
ment of wastewater with low fluoride content and com-
plicated components. Adsorption and ion exchange have 
been identified as potentially effective approaches for the 
removal of low to medium levels of fluoride. The adsor-
bents used generally include natural macromolecules, 
inorganic compounds, rare earth elements, and clay mate-
rials, etc. [10–14]. These adsorbents are best suited for the 
thorough removal of trace fluoride via monolayer adsorp-
tion [14]. However, the regeneration and desorption effi-
ciency of these adsorbents need to be explored to improve 
their reusability. Ion exchange resins are considered to be 
promising materials for fluoride removal, but their fluoride 
adsorption capacities decrease significantly when SO4

2–, 
NO3

–, or Cl– are present [15].
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To improve fluoride adsorption selectivity, metal- 
loaded chelating resins can be used. Chelating resins, such 
as the iminodiacetic acid resin or the amino phosphoric acid 
resin, benefit from the coordination between the metal ions 
(La3+, Ce3+, Zr4+, Al3+, etc.) and fluoride [16–19]. One possi-
ble adsorption mechanism by which Al-loaded iminodi-
acetic acid resin (TP208) absorbs fluoride can be seen [20] 
in Eqs. (1) and (2). Fluoride can be adsorbed and removed 
by the strong coordination among the iminodiacetic acid 
group, Al3+, and F–. The metal-loaded chelating resins 
have been proved effective for fluoride removal with high 
adsorption selectivity [20–23]:

R–CH2–N–CH2–COO– + Al3+ = R–CH2–N–CH2–COO––Al3+ (1)

R–CH2–N–CH2–COO––Al3+ + xF– =  
 R–CH2–N–CH2–COO––AlFx

3–x (2)

To decrease adsorption costs, the chelating resins should 
also be desorbed for cyclic utilization. The desorption abil-
ity of metal-loaded resins becomes the key factor limiting 
the application of this method. Studies on the desorption 
rate of fluoride and on the treatment of the desorption solu-
tion are relatively rare. One such study by Paudyal et al. 
[24,25] successfully used NaOH solution for the desorption 
of Zr-loaded resin. However, a large amount of desorp-
tion solution is produced at a relatively high liquid/solid 
ratio (e.g., 400:1). Furthermore, the treatment and recov-
ery of fluoride from desorption solutions have not been 
addressed. If the desorption solution can not be treated 
properly, new fluoride pollution will be produced, and 
fluoride resources in the desorption solution will be wasted.

Our previous research has shown that metal ions are 
desorbed from the chelating resin alongside fluoride into 
the solution [26]. Considering the value of metal ions (La3+, 
Ce3+, and Zr4+) and their inevitable loss during desorption 
experiments, the cheaper Al3+ ion was chosen for loading the 
iminodiacetic acid chelating resin (D751). After desorption, 
aluminum and fluoride were shown to be the main com-
ponents in the desorption solution, and from this solution 
cryolite (Na3AlF6) was identified as the preferred recovery 
product [9,27]. This study assessed the feasibility of desorp-
tion and recovery of fluoride from the Al-loaded D751 resin. 
The desorption behaviors of fluoride on the resin were 
investigated with low liquid/solid ratios using static desorp-
tion experiments. The optimal conditions for the recovery 
of cryolite from the desorption solution were determined 
using thermodynamic modeling and batch experiments.

2. Materials and methods

2.1. Materials

D751 resin, an iminodiacetic acid chelating resin in 
a sodium salt form, was donated by Wandong Resin 
Technology Co., Ltd., of China. Before loading with alu-
minum ions, the original D751 resin was pretreated with 
10% hydrochloric acid, 10% sodium hydroxide, and deion-
ized water successively until a neutral pH was achieved. 
All reagents, including NaF, NaOH, HCl, HF, and Al2(SO4)3 
were analytical grade.

2.2. Resin loading and fluoride adsorption

The D751 resin was loaded with Al3+ ions by submerg-
ing it in a 0.5 mol/L of Al2(SO4)3 solution for 2 h. Then the 
aluminum-loaded resin was washed with distilled water to 
regain a neutral pH, and dried at 60°C for 24 h.

The loaded D751 resin (50.0 g) was mixed together 
with 4.0 L of NaF solution containing 1,000 mg/L fluorides 
and stirred for 2 h at 25°C for adsorption. After adsorption, 
the residual fluoride concentration of the suspension was 
measured. The resin with adsorbed fluoride was washed 
with 100 mL distilled water and dried at 60°C for 24 h.

2.3. Desorption experiments

The adsorbed D751 resin (5.0 g) was mixed with 
10–50 mL of desorption reagents (NaOH or HCl) and stirred 
for 5–90 min at 25°C. After stirring, the residual concentra-
tions of fluoride and aluminum in the desorption solution 
were measured.

2.4. Recovery of the desorption solution

At the end of the desorption experiment, the solution 
had a fluoride concentration of 3,508.2 mg/L and an alu-
minum concentration of 5,041.8 mg/L. Hydrochloric acid 
(HCl, 5 mol/L) and hydrofluoric acid (HF, 40% w/v) were 
then added into this desorption solution (250 mL) and 
it was stirred for 60 min at 25°C. Then the residual con-
centration of fluoride in the treated desorption solution 
was measured. The precipitate was filtered, washed with 
100 mL distilled water, and dried at 60°C for 24 h.

2.5. Analysis

The reaction pH was measured using a pH meter, and 
the fluoride concentration was measured using an ion- 
selective electrode. The aluminum concentration was analyzed 
by inductively coupled plasma atomic emission spectroscopy 
(ICAP-7200). The resin was analyzed using infrared spec-
troscopy (Nicolet IS50, USA) and an energy dispersive spec-
trometer (JSM-7900F, Japan). The precipitate was analyzed 
by X-ray diffraction (XRD; Bruker D8 Advance, Germany).

The adsorption capacity of the resin (Qa) was 
determined using Eq. (3):

Q
c c V

ma
i

R

=
− ×( )0 NaF  (3)

where c0 and ci were the initial and residual fluoride con-
centrations, respectively, of the NaF solution; VNaF was the 
volume of NaF solution; and mR was the mass of the loaded 
resin.

The desorption ratio of fluoride (DF) was determined 
using Eq. (4):

D
c V
Q mF
d d

a a

=
×
×( ) ×100%

 (4)
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where cd was the fluoride concentration of desorption 
solution; Vd was the volume of desorption solution; and 
ma was the mass of the adsorbed resin.

The recovery ratio of fluoride (RF) was determined 
using Eq. (5):

R
c V V c

c VF
d d R R

d d

=
× ×

×
×

−( )
( ) 100%  (5)

where cR was the residual fluoride concentration of treated 
desorption solution; and VR was the residual volume of 
treated desorption solution.

The comprehensive recovery ratio of fluoride (RF,C) was 
determined using Eq. (6):

R
c V c V V c

c VF C
d d R R

d d
, %=

× + × ×

×
×

−( )
( )
HF HF 100  (6)

where cHF was the fluoride concentration of hydrofluoric 
acid; and VHF was the volume of the hydrofluoric acid.

2.6. Thermodynamic modeling

The possible species in the Al3+−Na+−F–−H+−H2O sys-
tem mainly included Al3+, Na+, F–, H+, AlF2+, AlF2

+, AlF3(aq), 
AlF4

–, AlF5
2–, AlF6

3–, Al(OH)2+, Al(OH)2
+, Al(OH)3(aq), Al(OH)4

–, 
HF, HF2

–, Na3AlF6(s), NaAlF4(s), and Al(OH)3(s). The ion 
and solid-phase equilibria are listed in Table 1. Eqs. (7)–(21) 
correlate the thermodynamic equilibrium constants of the 
different complexes to their molar concentrations.

The total concentrations of aluminum, sodium, and 
fluoride, denoted as CT,Al, CT,Na, and CT,F, were calculated 
as the sums of the concentrations of their complexes and 
free ions as illustrated in Eqs. (22)–(24):

CT,Al =  c(Al3+) + c(AlF2+) + c(AlF2
+) + c(AlF3)aq +  

c(AlF4
–) + c(AlF5

2–) + c(AlF6
3–) + c[Al(OH)2+] +  

c[Al(OH)2
+] + c[Al(OH)3]aq + c[Al(OH)4

–] (22)

CT,Na = c(Na+) (23)

CT,F =  c(F–) + c(HF) + c(HF2
–) + c(AlF2+) + 2c(AlF2

+) +  
3c(AlF3)aq + 4c(AlF4

–) + 5c(AlF5
2–) + 6c(AlF6

3–) (24)

The independence components in the system were 
c(Al3+), c(Na+), c(F–), and c(H+). According to Eqs. (7)–(24), 
if the CT,F/CT,Al, and CT,Na values were given; the predom-
inance diagrams of logCT,F vs. pH could be determined. 
If the CT,Na and pH values were given, the predominance 
diagrams of logCT,F vs. CT,F/CT,Al could be determined.

According to Eqs. (10)–(24), if the CT,F, CT,Al, and pH val-
ues were given; the distribution ratio of the fluoride species 
(αF,i) and aluminum species (αAl,i) was determined using 
Eqs. (25) and (26), respectively.

αF
F

F
,

,

,

%
i

i

T

c
C

=
×100

 (25)

αAl
Al

Al
,

,

,

%
i

i

T

c
C

=
×100

 (26)

where cF,i and cAl,i were the concentration of the fluoride and 
aluminum species, respectively.

3. Results and discussion

3.1. Characteristic of the resin

Fig. 1 shows the IR Spectra of the resin. Fig. 2 shows 
the EDS analysis of the fluoride-absorbed resin.

According to Eq. (3), the adsorption capacity of the resin 
was 35.1 mg/g. The aluminum and iminodiacetic acid on 
the resin were both essential for the adsorption of fluoride. 
As shown in Fig. 1, in the original resin the O–H stretching 
vibration peak was apparent at 3,390.13 cm–1 but was sig-
nificantly reduced after loading the resin with aluminum. 
This indicated that the OH– within the resin was neutral-
ized during the pretreatment process. The C=O stretching 
vibration was observed at 1,614.82 cm–1 in the original resin 
but shifted to 1,651.99 cm–1 in the aluminum-loaded resin. 
The C–O stretching vibration was present at 1,488.47 cm–1 
in the original resin but moved to 1,397.79 cm–1 in the alu-
minum-loaded resin. Therefore, the –COOH of the resin 
appeared to interact with aluminum, based on the changes 
to C=O and C–O after aluminum loading. In addition, the 
C=O stretching vibration only slightly decreased after fluo-
ride adsorption, and the C–F stretching vibration could be 
observed at 1,127.29 cm–1. The fluoride might be removed 
as a function of both Al–F and C–F by electrostatic adsorp-
tion, Lewis acid–base interaction, and complexation [20,22]. 
According to the EDS analysis, the average mass ratios of 
F, Na, and Al were 41.82%, 37.73%, and 20.45%, respec-
tively. This demonstrated that fluoride was effectively 
absorbed onto the aluminum-loaded resin. In addition, 
some fine particles were observed in the SEM images, 
which might be Na, Al, and F precipitates, such as Na3AlF6, 
during the adsorption process.

3.2. Desorption behavior of the absorbed resin

Fig. 3 shows the influence of reagents on the desorption 
ratio of fluoride. The desorption of fluoride reached equi-
librium within 30 min. The equilibrium desorption ratios of 
fluoride were 78.9% and 27.9% when using NaOH and HCl 
as the desorption reagents, respectively. The desorption of 
fluoride was determined by the stability of the iminodia-
cetic-aluminum complex [26]. In acid conditions, part of the 
iminodiacetic-aluminum complex was transformed into the 
iminodiacetic acid, but the iminodiacetic-aluminum com-
plex was still the dominant species. In alkaline conditions, 
the bond within the iminodiacetic-aluminum complex was 
broken completely, and aluminum entered the solution 
with the form of Al(OH)4

–. Therefore, alkaline conditions 
appeared to favor the desorption of fluoride from the resin.

Fig. 4 shows the influence of reagents concentration 
on the desorption ratio of fluoride. The desorption ratio of 
fluoride first increased with NaOH concentration before 
becoming stable. Approximately 80% of the fluoride was 
desorbed from the resin with NaOH concentrations of 
2.0–10.0 mol/L. The equilibrium between the remaining 
absorbed fluoride in the resin and the fluoride in the desorp-
tion solution occurred at the NaOH concentration of 2 mol/L. 
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Table 1
Ion and solid-phase equilibria for Al3+−Na+−F–−H+−H2O system (25°C)

No. Equilibrium reactions Equations Ref.

(7) Na3AlF6(s) ⇌ 3Na+ + Al3+ + 6F– [c(Na+)]3 × c(Al3+) × [c(F–)]6 = 1.46 × 10–34 [28]
(8) NaAlF4(s) ⇌ Na+ + AlF4

– c(Na+) × c(AlF4
–) = 10–4.92 [29]

(9) Al(OH)3(s) ⇌ Al3+ + 3OH– c(Al3+) × [c(OH–)]3 = 10–32.3 [30]

(10) AlF2+ ⇌ Al3+ + F–
c c

c

Al F

AlF

3

2
7 010

+ −

+

−( ) ( )
( )

×
= . [31]

(11) AlF2
+ ⇌ Al3+ + 2F–

c c

c

Al F

AlF

3
2

2

12 710
+ −

+

−
( ) ( )





( )
×

= . [31]

(12) (AlF3)aq ⇌ Al3+ + 3F–
c c

c

Al F

AlF
aq

3
3

3

16 810
+ −

−
( ) ( )





( )
×

= . [31]

(13) AlF4
– ⇌ Al3+ + 4F–

c c

c

Al F

AlF

3
4

4

19 410
+ −

−

−
( ) ( )





( )
×

= . [31]

(14) AlF5
2– ⇌ Al3+ + 5F–

c c

c

Al F

AlF

3
5

5
3

20 610
+ −

−

−
( ) ( )





( )
×

= . [31]

(15) AlF6
3– ⇌ Al3+ + 6F–

c c

c

Al F

AlF

3
6

6
3

20 610
+ −

−

−
( ) ( )





( )
×

= . [31]

(16) Al3+ + H2O ⇌ Al(OH)2+ + H+
c c

c

Al OH H

Al

( )( ) ( )
( )

×
=

+ +

+

−

2

3
4 9910 . [31]

(17) Al3+ + 2H2O ⇌ Al(OH)2
+ + 2H+

c c

c

Al OH H

Al

( )( ) ( )





( )
×

=

+ +

+

−2

2

3
10 110 . [31]

(18) Al3+ + 3H2O ⇌ [Al(OH)3]aq + 3H+
c c

c

Al OH H

Al
aq

( )  ( )





( )
×

=

+

+

−3

3

3
15 610 . [31]

(19) Al3+ + 4H2O ⇌ Al(OH)4
– + 4H+

c c

c

Al OH H

Al

( )  ( )





( )
×

=

−
+

+

−4

4

3
23 010 . [31]

(20) HF ⇌ H+ + F–
c c

c

F H

HF

− +

−( ) ( )
( )
×

= 10 3 176. [32]

(21) HF2
– ⇌ H+ + 2F–

c c

c

F H

HF

− +

−

−
( )



 ( )
( )

×
=

2

2

3 65310 . [32]
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Higher desorption ratios may be achieved by increasing the 
number of desorption or using ion-exchange columns for 
continuous desorption.

Fig. 5 shows the desorption ratios of fluoride and its 
concentrations in the desorption solutions in relation to 
the volume of the reagents. The liquid/solid ratio of Vd to 
ma ranged between 2:1 and 10:1, significantly lower than 
that (400:1) used in previous studies [24,25]. Both fluoride 
and aluminum concentrations increased with decreasing 
desorption reagent volume. The fluoride concentration of 
the desorption solution was 2.8–12.8 g/L, while the alumi-
num concentration was 4.0–18.1 g/L. The molar ratio of F/
Al in the desorption solution was 0.96–1.00. Their sim-
ilar molar ratios indicated that aluminum and fluoride 
were desorbed simultaneously from the resin, which was 
agreed with our previous adsorption results [26]. The main 
species of fluoride and aluminum in the desorption solu-
tion were F– and Al(OH)4

–, respectively, according to the 
distribution ratio of the fluoride species (Figs. S1 and S2).
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Fig. 1. IR spectra of the loaded resin.
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Besides, the desorption ratio of fluoride remained 
between 72.9% and 79.9%. Therefore, the volume of the 
desorption reagent only slightly influenced the desorp-
tion ratio of fluoride. High desorption ratios of fluoride 
and its highest concentrations in the desorption solution 
were achieved at relatively low liquid/solid ratios (i.e., 
4:1–10:1). The reagent cost was approximately 1%–2.5% of 
that reported in the literature [24,25]. To better facilitate the 
goal of recovering fluoride, its concentrations in the desorp-
tion solution can be adjusted by decreasing the liquid/ 
solid ratio.

3.3. Predominance diagrams for Al3+−Na+−F–−H+−H2O system

To guide recovery from the desorption solution, the pre-
cipitation–dissolution equilibrium was simulated. Figs. 6 and 
7 show the predominance diagrams for Al3+−Na+−F–−H+−H2O 
system.

The total equilibrium concentration of sodium (CT,Na) 
was set to 2 mol/L. At an equilibrium F/Al molar ratio 
of 1.0 in Fig. 6, the predominant solid phases changed 
from NaAlF4 to Al(OH)3 and Na3AlF6 at pH 3.0 and 11.8, 
respectively. Al(OH)3 was the predominant solid phase 
from pH 3.0 to pH–11.8. Al(OH)3 and NaAlF4 might pre-
cipitate simultaneously from the desorption solution 
between pH 3.0 and 6.1. Al(OH)3, NaAlF4, and Na3AlF6 
might precipitate simultaneously at pH > 6.1. At an 
equilibrium F/Al molar ratio of 6.0, Na3AlF6 was precip-
itated as the predominant solid phase from pH of 0 to 14. 
Na3AlF6 and NaAlF4 might precipitate simultaneously 
from the desorption solution. The lowest concentration of 
fluoride occurred at pH 3.5–7.0.

At an equilibrium pH of 6.0 in Fig. 7, the predomi-
nant solid phase was Al(OH)3 at a F/Al molar ratio from 
1.0 to 3.1. Then Na3AlF6 became more stable at F/Al molar 
ratios above 3.1. Na3AlF6 was more easily precipitated than 
NaAlF4, accompanied by a relatively low concentration 
of fluoride. In order to obtain a pure Na3AlF6 precipitate, 
the F/Al molar ratio of the desorption solution should be 
maintained above 3.1 at pH 6.0.
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3.4. Recovery of the desorption solution

Fig. 8 shows the influence of reaction pH on the recov-
ery rate of fluoride. Fig. 9 shows the influence of the F/Al 
molar ratio on the recovery rate of fluoride. Fig. 10 shows 
the XRD spectra of the recovered precipitations.

As shown in Fig. 8, the initial F/Al molar ratio of the 
desorption solution was 1.0. The residual fluoride concen-
tration of treated desorption solution was 645.1–746.9 mg/L 
at pH 4.0–6.0, and the recovery ratio of fluoride was 
77.0%–79.8%. As shown in Fig. 10a, NaAlF4 made up the 
majority of the precipitate at pH 6.0. The residual fluoride 
concentration of treated desorption solution increased to 
above 1,000 mg/L at pH 7.9–10.3, and the recovery ratio 
of fluoride decreased to below 70%. As shown in Fig. 6a, 
Al(OH)3 and NaAlF4 transformed into Al(OH)4

– at higher 
pH levels [26], leading to the dissolution of fluoride in the 
treated desorption solution. Therefore, a F/Al molar ratio 
of 1.0 was not suitable for the precipitation of Na3AlF6.

As shown in Fig. 9, HF was added into the desorption 
solution to adjust the initial F/Al molar ratio. The resid-
ual fluoride concentration decreased with increasing F/Al 
molar ratio. According to Fig. 7, the majority of aluminum 

was precipitated in the form of Al(OH)3 at low F/Al molar 
ratios. Fluoride was not precipitated completely in the form 
of Na3AlF6, and the residual fluoride was kept in a solu-
tion with a high concentration. With the increased F/Al 
molar ratio, Na3AlF6 became the predominant solid phase. 
Na3AlF6 was more stable than NaAlF4 with relatively low 
solubility. Therefore, the concentration of fluoride decreased 
at a high F/Al molar ratio.

The residual fluoride concentration of treated desorp-
tion solution decreased to 482.5–401.8 mg/L at a F/Al 
molar ratio of 5.0–6.0 and pH of 6.0. At this molar ratio, 
the recovery of fluoride was above 80%, and the com-
prehensive recovery of fluoride was above 90%. This 
demonstrated that the addition of HF decreased the resid-
ual fluoride concentration, and increased the recovery of 
fluoride. As shown in Fig. 10b, the phase of the precipi-
tate matched the standard phase of Na3AlF6. Furthermore, 
the results of the batch experiment were consistent with 
the thermodynamic model. Therefore, the fluoride in the 
desorption solution could be recovered as Na3AlF6 when 
the reaction pH and the F/Al molar ratio were controlled.

4. Conclusions

To determine the feasibility of desorbing and recover-
ing fluoride from an Al-loaded D751 resin, the desorption 
abilities of the fluoride-carrying resin and treatments for 
the desorption solution were investigated. The main results 
were:

NaOH was a more suitable desorption reagent than 
HCl. The fluoride desorption ratio surpassed 80% after 30 min 
when the NaOH concentration was 2.0–10.0 mol/L, and 
the liquid/solid ratio of Vd to ma was 4:1–10:1. The fluoride 
concentration of the desorption solution was 2.8–12.8 g/L 
when the F/Al molar ratio was 0.96–1.00. The F/Al molar 
ratio and reaction pH were the main factors determin-
ing the recovery of fluoride from the desorption solution. 
More than 80% of the fluoride was recovered as cryolite 
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Fig. 8. Influence of reaction pH on the recovery rate of fluoride.
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when a F/Al molar ratio of 5.0–6.0 and a pH of 6.0 was 
maintained by adding HF and HCl. The residual fluoride 
concentration of the desorption solution decreased from 
3,508.2 mg/L to 401.8–482.5 mg/L. This provides a poten-
tially effective way to desorb fluoride from cheating resins, 
and for the recovery of fluoride from desorption solutions as 
a valuable cryolite product.
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