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a b s t r a c t
Surface and underground water contamination are becoming a serious concern with time. In recent 
years, pharmaceuticals, especially antibiotics have emerged as a serious water pollution hazard. 
This study is for the treatment of a pharmaceutical effluent containing the antibiotic compound 
ciprofloxacin (CIP). Contact glow discharge (CGD) process is used for the degradation of CIP-
containing effluent of the pharmaceutical industry. The results show that CGD has a clear impact 
on the degradation of CIP. In 15 min, the degradation is only 2.5% and increases with exposure, 
reaches 84.3% in 150 min and attains a saturating trend, just 84.8% in 180 min. With the use of 
stainless steel (AISI 304) in CGD, iron ions are included in the solution which accelerates the deg-
radation process. The change in the degradation rate of CIP with the addition of FeSO4 (2–15 mg/L) 
is investigated and it becomes almost double when the salt concentration is changed from 2 to 
15 mg/L. According to our knowledge, it is the first study for pharmaceutical antibiotic CIP 
effluent decomposition by plasma liquid system.
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1. Introduction

Contamination of surface waters by the continued 
release of pharmaceuticals has been the subject of special 
attention over recent years. Particularly the existence of 
antibiotics has become a growing concern in the aquatic 
environment due to their increased production, consump-
tion, and persistence in the environment that can lead to 
the quick development of antibiotic resistance in the bac-
teriological communities [1,2]. Among antibiotics, the 
fluoroquinolones (FQs) are the utmost successful set of 
manmade drugs that are expansively used in veterinary or 
human treatments and are repeatedly introduced into the 

aquatic environment [3] as a majority of these compounds 
are released un-metabolized or as an energetic metabolite 
in wastewaters through various anthropological activi-
ties including, discharges from manufacturing facilities or 
hospitals, veterinary drug use, agricultural/land runoff, 
and inappropriate dumping of unused/ expired medicines 
(the common practice of flushing down the toilet) [4].

Employing regular use of antibiotics, normally hospi-
tals were considered as the main provider of antibacterial 
residues to the aquatic systems. But, the pollution of aquatic 
environments through antibiotic production units has not 
collected much attention [5]. The effluents discharged by 
hospitals contain high concentrations of antibiotics (up 
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to µg/L) when compared to urban sewage or dairies [6]. 
Whereas recently, antibiotic emissions detected at mg/L 
concentration from manufacturing facilities also shows 
their alarming significance [7,8] and it became a promising 
source of antibacterial residues in the aquatic systems [9].

The unconstrained production and use of FQs for the 
control of contagions in humans and animals have increased 
in Pakistan, which resulted in a large number of antibiotic 
residues in watercourses [2,10]. Besides the severity and 
importance of the issue, only a few studies are available 
regarding the existence of these antibacterial compounds 
in the environment of Pakistan. Thus, detailed and targeted 
investigations are required to investigate the presence, 
sources, and fate of these compounds [10,11]. Due to the 
limitation of conventional treatment technologies for effec-
tive removal of these recalcitrant compounds there was a 
need to develop a promising, safe, efficient, and environ-
mentally friendly method to degrade such organic per-
sistent compounds.

Many of the researchers have used different methods 
for the degradation of recalcitrant compounds from waste-
water. Among a massive range of treatment technologies 
Atmospheric pressure microplasmas over a suitable liq-
uid surface, are very simple, low cost, and environmental 
friendly. Recently, Rezaei et al. [12] published a comprehen-
sive review covering different applications in material pro-
cessing, nanoscience, biomedicine, sterilization, food, and 
the environment. As the discharges are at atmospheric pres-
sure and room temperature, using moderate current and 
voltages, one doesn’t need expensive vacuum equipment 
and heating or cooling arrangements [13–15]. For wastewa-
ter treatment, plasma-based oxidation is becoming popular 
for research as it rapidly removes organic contaminants and 
it is environmental friendly. This type of plasma is catego-
rized as nonthermal, as electrons’ energy/temperature is 
much higher than the molecular ions’ energy/temperature. 
Energetic electrons interact with the background com-
pounds like O2, N2, or H2O and produce reactive radicals 
which diffuse in the reaction solution and decompose dif-
ferent present organic compounds in the solution [16–18].

Baloul et al. [19] investigated the degradation of 
paracetamol residue in water by the impact of non-thermal 
plasma in a multi-needle to plate reactor. Various inlet gases 
like air, N2, and Ar were used. A conversion rate of 81% in 
the air was obtained. It was proposed that if the discharge is 
in the oxygenated gas, it will promote the production of O 
atoms and O3 that will increase the paracetamol degradation.

In this paper, degradation of the effluent of a pharma-
ceutical industry containing fluoroquinolone by CGD is 
reported. Ciprofloxacin (CIP) a broad-spectrum fluoroquino-
lone antibiotic employed as the model pollutant due to high 
consumption, the highest production, regular detection in 
the effluent, and a serious risk to the environment. It has the 
chemical formula C17H18FN3O3 and a molecular weight of 
331.347 g/mol.

2. Experimental system and diagnostics

CIP belongs to FQ antibiotic group was selected for 
analysis in this study, because of its high consumption 
(high prescription rate in Pakistan), high production, 

regular detection in the effluents, significance, inherent 
cytotoxicity activity, and potential risk to the environment. 
The CIP of high purity > 98% was provided by Harmann 
Pharmaceutical Laboratories Ltd., Lahore Pakistan. All 
chemicals and reagents used in the study were of analyt-
ical grade or higher. Methanol used for chromatographic 
analysis was of high-performance liquid chromatography 
grade and purchased from the RCI Lab scan (Thailand). 
The chemical structure of CIP is given in Fig. 1.

To prevent adsorbing of antibiotics to the walls of 
glassware, the entire glassware used in the work was 
sali nized with dimethyldichlorosilane solution in tolu-
ene 10% (v/v) followed by a rinse with toluene and then 
methanol [20]. It followed the heating of glassware for 1 h 
at 450°C (842°F), and then rinsed with a strong chelating 
agent Na2EDTA for excluding any possible interaction 
with metal ions [2,21]. The samples were taken in a pre-
washed amber glass bottle and transported to the labo-
ratory in ice-packed boxes. The suspended particles in the 
effluent were removed by filtering through Whatman glass 
fiber filters. Then, it was stored in dark without the addi-
tion of any chemical at 4°C for subsequent analysis [22]. 
The stock solution of CIP (1 mg/mL) was prepared with 
deionized water. The stock solution was stored in amber 
bottles at the cool place (4°C) for up to 2 months while 
working solutions were prepared on daily basis.

Fig. 2 presents the experimental arrangement. The 
reaction cell contained 200 mL solution. A stainless steel tube 
of 2 mm diameter is used as the cathode, fixed at one end, 
and attached with a stainless steel needle of outer diameter 
0.64 and 0.34 mm inner diameter. The needle was adjusted 
0.75 mm above the solution surface. The anode was also 
a stainless steel wire of different diameters (0.5–1.5 mm), 
connected to the HV power supply. A negative DC power 
supply is used to initiate and sustain the microplasma. 
The industrial-grade argon gas at 100 sccm is passed 
through the needle for plasma formation. The current is 
kept constant at 15 mA by using an 8 kΩ ballast resistor. 
The experiment was conducted at atmospheric pressure 
and room temperature (25°C; 77°F). After various time 
intervals (10–180 min), the samples were analyzed for 
CIP degradation and chemical oxygen demand (COD).

3. Results and discussion

For the analysis of CIP, a volume of 20 µL of the sam-
ple was injected into a liquid chromatography system at 
a wavelength of 279 nm. The degradation efficiency of 
CIP was calculated using the equation [23]:

CIP
CIP CIP

CIP
%( ) = −







×

0

0

100t  (1)

where CIP(%) is the percentage of degradation rate, 
C0 is the concentration of CIP before any treatment, Ct is 
the concentration after treatment process of t min. Fig. 3 
shows CIP degradation with anodes of different diameters 
which indicates that the CGD process had a clear impact 
on the degradation of CIP and the initial concentration of 
CIP in the effluent was slightly reduced with an increase 
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in exposure of the plasma discharge time. Concerning the 
plasma exposure (1 mm = stainless steel anode) of 15 min, 
only 2.5% CIP was degraded which increased with expo-
sure and reached 84.3% after 150 min. Moreover, when 
plasma time increased to 3 h (180 min) the 84.8% degra-
dation was achieved with no further degradation. With 
the use of stainless steel anode in the CGD process, iron 
ions dispersed into the tested solution due to corrosion 
of the electrode [24] which can accelerate the degrada-
tion of CIP in the effluent. Furthermore, when changed 
the diameter of the anode by 0.5 and 1.5 mm, the degra-
dation of CIP after 180 min of plasma process was 71.3% 

and 85.6%, respectively, also shown in 3. The difference 
between the degradation degrees of CIP with different 
anode diameters is because with increasing the diameter 
of the anode, the slightly extra current passed through it 
which also enhanced the degradation of CIP [17]. According 
to Kao and Huang [25], the stainless steel wire corrodes (Fe 
diffused into solution) well at pH 4. However, the pH ≤ 4 
value was observed in the current study during CGD 
treatment (45–90 min) which could be a reason behind 
maximum CIP degradation at this time.

Several researchers have reported that CIP degra-
dation obeys first-order kinetics oxidative processes 
[26,27]. The degradation rate of CIP for each treatment is 
calculated by using the following first-order equation [28]:

− =








kt

C
C
tln
0

 (2)

Here, k indicates the degradation rate constant (min–1) and t 
is the oxidation process time. Fig. 4 depicts the variation deg-
radation rate constant with time. The maximum rate constant 
for CIP degradation is observed during 45–90 min.

Adsorption process using various adsorbents was 
implied to study the removal efficiency of CIP, among 
them, multiwalled carbon nanotubes were successfully 
used as adsorbents, however, the adsorption process was 
slower as compared to the current investigation for the 
removal of CIP in water [29]. Various advanced oxidation 
processes (AOPs) were also successfully investigated for the 
removal of CIP. Mondal et al. [30] implied various AOPs for 
the CIP removal and found that the photocatalytic process 
using zerovalent iron was efficient as compared to other 
processes (H2O2/UV, UV, and H2 O2  ). Moreover, the removal 
efficiency of CIP was found to be about 99% in 120 min 
at optimum conditions [31]. In the current investigation 
(Fig. 6) about 99% CIP removal efficiency was achieved in 
40 min (FeSO4 = 15 mg/L). Similarly, other findings using 
AOPs indicate that the studied CGD-based process is 
comparable to previously studied AOPs and shows better 
performance as compared to some of the studied AOPs [32].

The CGD can generate many chemical reactions and 
hence various reactive species including OH*, H*, and H2O2. 
These species are helpful for further degradation of dif-
ferent organic contaminants. The conductivity of the solu-
tion increases with the treatment time [24]. The increase 
in conductivity is due to the increase in reactive species 
(OH*, H*, and H2O2) which degrade the CIP and convert 
organic compounds into organic acids [18,24]. Initially, 
due to low conductivity, the CIP degradation was low upto 
30 min. With process time, the conductivity increases and 
hence degradation rate of CIP increases rapidly, reaching 
to a maximum of 85.6% in 180 min. 

During the CGD, the pH of the treated effluent 
decreases with the process time. It may be explained in 
terms of plasma water interaction that can produce short-
lived OH* in a medium with a pH of more than 7 that fur-
ther recombine to form long-lived reactive species like 
H2O2. The production of H* also changes the pH of the 
treated solutions [33–35]. The change in pH may also be 
due to the production of carboxylic intermediary products 

 

Fig. 1. Chemical structure of CIP.

Fig. 2. Schematic arrangement of glow discharge electrolysis.

Fig. 3. Effect of anode diameter on CIP degradation.
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during the CIP degradation. The change of conductivity 
and the pH of the treated sample is shown in Fig. 5.

A ferrous salt FeSO4 was added to investigate its effect 
on the degradation of CIP. The presence of iron in the 
treated effluent can enhance the degradation efficiency 
of CIP through the following reactions [17,36,37]. The sec-
ond-order rate constants of the following reactions were 
with k-values of 63, 3.2 × 108, 8.4 × 106, 2.7 × 107 1/M S, 
respectively, for Eqs. (3)–(6) [38]. Following are the key 
reactions in such processes since they involve the for-
mation of reactive oxygen species that reacts with 
pollutants leading to the degradation of pollutant:

Fe2+ + H2O2 → Fe3+ + OH− + HO• (3)

Fe2+ + HO• → Fe3+ + OH− (4)

Fe3+ + H2O2 → Fe2+ + HO2
• + H+ (5)

HO• + H2O2 → HO2
• + H2O (6)

Fe3+ + e– → Fe2+ (7)

Fig. 6 presents the change in the degradation rate of 
CIP with the addition of FeSO4 (2–15 mg/L). The addi-
tion of iron ions significantly improves the degradation of 

CIP. As the oxidation potential of HO2
• is more than H2O2, 

so the addition of Fe2+ has improved the degradation of 
CIP. The degradation increases as high as 97.3% just in 
40 min for FeSO4 salt concentration of 15 mg/L. The deg-
radation of the target compound is also monitored by 
the concentration of COD, which describes the amount 
of mineralization [39]. The CGD removes the COD and 
the removal is rapid with the addition of FeSO4 salt (Fig. 7).

4. Conclusions

In recent years, pharmaceuticals, especially antibi-
otics have emerged as a serious pollution hazard in the 
surface and underground water. This study is for the 
treatment of a pharmaceutical effluent containing an anti-
biotic compound CIP. Contact glow discharge (CGD) pro-
cess is used for the degradation of CIP-containing effluent 
of the pharmaceutical industry. The results show that CGD  
has a significant impact on the degradation of CIP. Initially, 
the degradation is slow and increases with exposure, 
reaches 84.3% in 150 min and attains a saturating trend, 
just 84.8% in 180 min. With the use of stainless steel (AISI 
304) anode in CGD, iron ions are included in the solution 
which accelerates the degradation process. The stain-
less-steel anode of larger diameter proved more beneficial. 
The change in the degradation rate of CIP with the addi-
tion of FeSO4 (2–15 mg/L) is also investigated. It is found 
that degradation becomes almost double when the salt 
concentration is increased from 2 to 15 mg/L. According 

Fig. 4. Variation of degradation rate constant k with time.

Fig. 5. Variation in conductivity and pH of the solution with 
time during CGD.
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to our knowledge, it is the first study for pharmaceutical 
antibiotic CIP effluent decomposition by plasma liquid 
system. With the degradation of the effluent, the conduc-
tivity of the solution increases almost three times, and 
the pH decreases by the same factor of three, but both 
behaviors are saturated. The same behavior is recorded for 
the COD removal, which increases quite rapidly.

In conclusion, the CGD is found an efficient technique 
to remove the antibiotic compound CIP from the efflu-
ent of a pharmaceutical industry that in turn reduces 
the pollution hazard in the surface and underground water.
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