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a b s t r a c t
Desalination in the marine world has always been one of the most widely used resources for 
obtaining fresh water. Its greatest disadvantage is energy consumption, which has led to many 
studies to investigate how to reduce it. This work presents the results obtained from analysing the 
energy consumption of a small-scale seawater reverse osmosis desalination plant and its application 
in small marine vessels. An artificial neural network model was applied to optimise the perfor-
mance of the plant. For this research, different parameters have been considered, namely, the flow 
rate, pressure and conductivity of the water demanded in the vessel. In the experimental study, 
the optimal pressure points applied in the system are estimated to satisfy both the water quality 
and low energy consumption requirements.
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1. Introduction

For millions of years, desalination has been occurring 
through the natural process of water evaporating from 
the sea surface [1]. Eventually, this method was industri-
alised and widely adapted by mankind to obtain fresh 
water. Throughout history, different ways have been used 
to desalinate salt water. Spain has been a pioneer in this 
area, and more specifically the Canary Islands, where this 
technology has been developed due to the scarcity of water 
on the Western Islands (Gran Canaria, Fuerteventura and 
Lanzarote) [2].

The main drawback of desalination is the large amount 
of energy consumed throughout the process to produce 
fresh water, something that has been gradually reduced 

over the years after numerous studies. When reverse osmo-
sis technology started in the 1970s, the specific energy 
consumption in plants was over 15 kWh/m3 of water 
produced. Currently, plants consume in total between 
2.5 and 5 kWh/m3 [3].

The two major technologies for desalting sea or brack-
ish water are distillation and membrane processes. Within 
desalination technologies, reverse osmosis (membrane 
process) is by far the most dominant, producing 69% 
(65.5 million m3/d) of the total global desalinated water. This 
is due to its low energy consumption compared to other 
water desalination technologies. Multi-effect distillation and 
multi-stage flash (distillation technologies) produce most 
of the remaining desalinated water, with market shares 
of 18% and 7% respectively [4].
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1.1. Vessels and the marine world

A bibliographic review shows that there have been 
many studies and improvements in onshore desalina-
tion; however, there are not as many references regarding 
the marine world. The intention of this research is thus to 
improve the control and planning of these systems in boats 
of different sizes.

To obtain drinking water on a ship, there are mainly two 
methods: storing it on board and refilling it in port once it 
is used or obtaining it from the sea through a desalination 
process. Rainwater can also be collected, but it would not 
be suitable for human consumption. For long trips, sav-
ing space on any boat is always an advantage, making 
desalination an attractive option to meet the water demand.

Desalination systems are widely used nowadays on large 
ships, such as cruise ships, but not as much on small ones. 
The vessels to which this study could be applicable include 
pleasure craft such, as sailboats or yachts, and fishing ves-
sels. A primary concern in boats is calculating the energy 
consumption of the whole system, which makes it neces-
sary to carry out the best possible planning if a seawater 
reverse osmosis (SWRO) plant is to be used on the boat.

Most of the energy supplied in ships comes from fossil 
fuels. Employing these resources to supply energy not only 
has economic consequences, but their environmental and 
social cost is very high in terms of damage to human health 
and the environment. For example, electricity in fishing 
boats in Spain is produced using generators located in the 
engine room, sized according to the power of the equipment 
installed on board. Although a coefficient that considers the 
simultaneity of equipment should be considered, a lack of 
knowledge in this regard leads to excessive oversizing of 
generators [5].

1.2. Artificial Intelligence applied to desalination

Many studies have been carried out over the years 
since El-Hawary [6] first applied a neural network in 1993 
to the field of desalination. Other researchers have applied 
different Artificial Intelligence techniques to desalination, 
such as artificial neural networks [7,8], fuzzy logic, genetic 
programming and model trees [9–11].

In the field of desalination, several approaches based 
on the development of physical equations have been used. 
In general, these mathematical models tend to be complex, 
in the sense that they are high-dimensional models and 
show a complex interaction between their different vari-
ables. Consequently, many researchers have applied new 
paradigms as an alternative approach from the point of 
view of identification and control of systems [12,13]. In this 
article, artificial neural networks have been chosen as this 
alternative paradigm. Therefore, the main novelty of this 
work lies in proposing a predictive tool based on neural 
networks to optimize the operation of a desalination plant 
based on different relevant criteria within a vessel.

1.3. Aims of the research

Considering the points mentioned above, the need arises 
to design tools that can be used to adequately plan energy 

consumption on boats. The main objective of this study is 
to develop a predictor tool that allows the user or operator 
to adjust the main actuator of the plant (pressure vessel) 
to plan the time of use of the equipment considering the 
needs of the boat and the salinity of the permeate water.

Through the model developed using artificial neural 
network (ANNs), the system was able to output the pres-
sure at which it is necessary to run the pump and the time 
the plant takes to desalinate the water demanded. This 
minimises the energy consumed to produce water on the 
boat. The parameters used in the neural network are spec-
ified below.

For the study, measurements were made onshore; how-
ever, in the future, we propose implementing the system 
in vessels such as the one shown in Fig. 1 (University of 
La Laguna) to obtain data on the high seas with different 
feedwater temperatures in the desalination plant.

The paper is structured as follows. Section 2 describes 
the equipment used, while the model developed is shown 
in Section 3. Then, Section 4 discusses the results, and 
the conclusions of the study are presented in Section 5.

2. Description of the equipment

Experiments were carried out with a small-scale sea-
water reverse osmosis desalination plant (OSMOMAR 
OM-02-01). It is a single-stage plant (Fig. 2) that consists of 
a low-pressure pump that transports the salt water to the 
device after it goes through a pre-filtration system (which 
includes a disk filter and three cartridge filters). Once the 
water is filtered, it is transported to the membrane, in which 
a high-pressure pump (HPP) supplies enough pressure to 
force the feed flow to pass through one membrane, exceed-
ing the osmotic pressure and leaving behind the salts pres-
ent in the water.

In this study, the plant was assembled with a single mem-
brane because the objective is to find the optimum work-
ing pressure in the simplest scenario possible. However, 
the device allows up to a maximum of three membranes. 
Note that our interest is focused on small marine vessels 
where a simpler configuration is desired. Therefore, as the 
device used is a pilot plant for research purposes, a single 
membrane has been assembled.

The main characteristics of the plant are shown in 
Table 1. The values shown in this table are indicative since 
they vary depending on different parameters: temperature 
and conductivity of the feedwater, number of membranes 
used in the plant, etc.

The entire unit is shown in Fig. 3. This structure makes 
it possible to transport the plant and to take datasets in 
different places. In this case, data were taken onshore. 
The MATLAB software was used to design the tool.

3. Methodology

3.1. Data generation

The experimental data used to feed into the neural 
networks were obtained in Tenerife (Canary Islands, Spain). 
The feedwater temperature, pH and conductivity used 
in the data collection are considered constant. The values 



G. Nicolás Marichal Plasencia et al. / Desalination and Water Treatment 225 (2021) 364–370366

shown below are the average feedwater readings during 
the data collection:

•	 Temperature: 19.68°C
•	 pH: 8.06
•	 Conductivity: 51,623 µS/cm

While the data were collected, the plant was connected 
to the conventional electricity grid, meaning the feed 
flow and the power consumed by the lower pump were 

constant. The pressure applied in the HPP was varied from 
0 to 60 bar, which allowed us to observe the behaviour of 
the system. As mentioned before, the variables of interest 
in the study are the pressure of the HPP, the power con-
sumed by the plant, the permeate flow rate and the permeate  
conductivity.

In total, 901 samples of each variable were considered. 
Table 2 shows an example of the dataset used to feed the 
artificial neural networks. It is important to remark that 
a variation from 0 to 60 bar has been done. Only values 
above 50 bar have provided an adequate amount of water. 
Because of that, only these values have been considered  
in Table 2.

3.2. Artificial neural networks structure

As already explained in the introduction, there is a 
need to achieve the greatest possible energy savings in any 
marine vessel. The tool developed allows the crew of a small 
boat to plan the use of the desalination plant in detail. This, 
therefore, can be used to anticipate the energy consumption 
of the system and to vary the working pressure depending 
on the conductivity of the desalinated water.

The plant was operated in different scenarios; that is, 
different positions of the valve were tested. Different param-
eters, such as, HPP pressure, permeate flow rate, perme-
ate conductivity and power were obtained for each case. 
Note that these parameters were obtained in steady state; 
hence, each scenario corresponds with each experimental 
run. 

Fig. 1. Sailboat of the Polytechnic School of Engineering (Universidad de La Laguna).

Fig. 2. Layout of the single-stage SWRO plant.

Table 1
Main characteristics of the plant

Parameter Characteristics

Production capacity, l/d 1,500–2,000
HPP working pressure, bar 55
HPP maximum pressure, bar 65
HPP rpm 1,500
Feed flow rate, l/min 16
Permeate recovery rate, % 35 (3 membranes)
Electrical connection 400 V, 3 ph, 50 Hz
Power consumption, kW 2.75
Membrane type Cross-lined aromatic 

polyamide
Element configuration Spiral wound, tape wrap
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With this in mind, the goal is to find the most efficient 
scenario for a given permeate conductivity value and adjust 
the valve pressure to that value. Once that value is chosen, 
the other parameters can be obtained by using the corre-
sponding values of these parameters for this scenario, since it 
was already tested previously.

In this paper, an alternative approach for devising a 
model is shown that relies on experimental scenarios instead 
of using a model developed from theoretical knowledge. 
Because of this, the resulting model in this case is less gen-
eral that one based on equations associated with theoretical 
knowledge.

In this case, only a specific plant in a particular working 
environment is considered, which means that only a limited 
change in the conditions of the plant and their variables is 
allowed. In order to achieve this prediction model in these 
restricted working conditions, neural networks were used.

To control several variables of the desalination plant, a 
strategy based on varying the pressure and keeping constant 
the input flowrate was chosen from the various alternative 
control strategies shown by Pohl et al. [14]. Note that, the 
recovery rate, water amount, and permeate conductivity 
are values changing in the control process. However, in this 
paper, the devised control strategy was focused on dealing 
only as setpoints the water conductivity and a water amount. 
A diagram representing the open-loop control scheme is 
shown in Fig. 5. The open-loop controller has been named 
“predictor tool” in the figure.

The networks used to solve this problem are three 
two-layer feed-forward networks using the Levenberg-
Marquardt optimisation method, which stops the training 
automatically when the generalisation stops improving. 
The dataset obtained feeds it. The input to the ANNs is the 

permeate conductivity rate, while the outputs are the HPP 
pressure, the permeate flow rate and the power consumed 
by the plant (Fig. 4).

The optimal number of hidden layers used in neural 
networks was previously studied [7]. When choosing the 
number of neurons in the hidden layer, ten neurons were 
chosen in each of the three neural networks using a trial- 
error system. The network uses an activation sigmoidal 
function (1) in the hidden layer and a linear activation 
function (2) in the output layer.

f x
e x( ) =

+ −

1
1

�  (1)

where x is the sum of the weighted inputs to the neuron and 
f(x) represents the output of the node.

f x x( ) =  (2)

Finally, the data were divided into three groups for 
training, validation, and testing. 70% of the data were used 
to train the network (it adjusts to its error), 15% to validate 
it (these samples were used to measure network generali-
sation and stop the training when this generalisation stops 
improving) and 15% to test it, which provided an indepen-
dent measure of the network’s performance during and after 
the training.

The network validation system is the mean square error 
(MSE), one of the most widely used systems today, and the 
root mean square error (RMSE). MSE is the average squared 
difference between outputs and targets and is defined 
by the following equation:

Fig. 3. SWRO desalination plant used in the research.
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where n is the number of predictions, Y is the vector of 
observed values and Ŷ is the vector of predicted values.

From a certain amount of water and a permeate con-
ductivity as set-points, the following variables are obtained: 
the pressure at which the HPP has to turn on, the energy 

consumption and the run time of the unit. Note that the set-
points given as inputs in Fig. 5 are achieved by these output 
variables. The results are discussed in the next section.

4. Results

After training, validation and testing the network, the 
results were analysed and displayed using different graphs. 
Figs. 6, 7 and 8 show the correlation coefficients R of the three 
different ANNs developed. In addition, Table 3 provides 
the results of the MSE and RMSE used to validate the ANN.

Note that the RMSE values given in Table 3 are the 
output errors; that is, the RMSE values corresponding 
to ANN1, ANN2 and ANN3. As we can see, the value 
obtained was 1.494 bar. This means that the output value 
only varies by approximately 1.494 bar with respect to the 
real value. The RMSE values corresponding to ANN2 and 
ANN3 refer to errors in permeate flow rate units and power 
units, respectively. Note that the values obtained exhibit a 
small variation with respect to the real values, so the results 
are satisfactory.

Figs. 6, 7, and 8 show plots of the network outputs 
(predicted rates) vs. the targets (actual rates). We see that 
the correlation coefficients R of the ANNs are not far from 
1. The values of ANN1 (R = 0.93062), ANN2 (R = 0.95848) 
and ANN3 (R = 0.94251) are consistent with good results.

Finally, an example is shown in which the input values 
of the predictor tool are simulated to validate the method 
used in the paper. 

For example, if the needs of a vessel were to obtain 
100 L of water with a conductivity of 500 µS/cm, the outputs 
of the predictor function would indicate the following:

•	 HPP pressure: 49.202 bar
•	 Plant run time: 1.6 h
•	 Power used: 3.9 kW
•	 Energy used: 5.711 kWh

Table 2
Sample of the recorded dataset

Row  
number

Permeate  
flow rate (l/h)

Permeate  
conductivity (µS/cm)

HPP  
pressure (bar)

Power 
(W)

1 50 657 50 2,139
… … … … …
… … … … …
450 62.5 475 55 2,394.7
… … … … …
… … … … …
900 75 415 60 2,526.5

Table 3
Validation systems of the ANNs

Artificial neural network MSE RMSE

ANN1 2.232 1.494 bar
ANN2 8.4712 2.9105 µS/cm
ANN3 1,267.5 35.6022 W

Fig. 4. Diagram of the artificial neural networks.

Fig. 5. Layout of the predictor tool developed.
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5. Conclusions

In this paper, three artificial neural networks were used 
to predict the behaviour of an SWRO desalination plant 
implemented in a small boat. After that, a predictor tool was 
developed to facilitate the planning of the plant.

The predictor tool provides a good energy plan-
ning on small vessels. It is important to remark that this 
fact is relevant, considering how limitations in the avail-
ability of energy is a common characteristic in vessels 
(especially when renewable energies are used).

As shown in Table 3, good results are obtained in 
terms of the root mean squared errors for the variables of 

interest. That is, the level of prediction for the variables of 
interest allows devising a convenient predictor tool for the 
optimal operation of the desalination plant according to a 
set of established criteria.

Although the proposed predictor tool is adequate for 
vessels in general, this paper focused on small vessels where 
a tool of this kind is essential, given their more restrictive 
water and energy limitations. Moreover, the small size of 
the vessel suggests having the desalination plant run for a 
short period of time in order to avoid excessive noise, and 
also to avoid concurrent operations with other equipment. 
The methodology proposed thus provides a convenient 
tool with which to achieve these objectives.

For the sake of simplicity, only one membrane has been 
used. However, the proposed methodology could be eas-
ily extended to a greater number of membranes. The use of 
new membranes would allow reducing the working pres-
sure. On the other hand, new studies could be carried out 
to improve the plant performance including new elements 
as antiscalants. These new elements could be a significant 
improvement from the maintenance point of view.
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