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a b s t r a c t
In this study, isotherm models were used to describe the interactions between adsorbent (zeo-
lite 4A) and adsorbate (Cu2+, Ni2+, and Zn2+) at different concentrations in both simple and mul-
ticomponent systems. To assess the effect of the mass transfer parameters on the adsorption 
kinetics, the pore diffusivity model was also applied. The adsorption selectivity of the adsorbent 
material was evaluated as a function of the initial concentration in binary and ternary systems, as 
well as the competitive adsorption between the metallic ions in synthetic zeolite 4A. The synthe-
sized zeolite was characterized by different techniques such as powder X-ray diffraction, infrared 
vibrational spectroscopy, and scanning electron microscopy. Langmuir, Freundlich and Sips iso-
therm models fitted the experimental data of Cu2+ and Ni2+, whereas Langmuir and Freundlich 
models fitted the experimental data of Zn2+. The adsorption kinetics was fast for Cu2+ and Zn2+, 
and slow for Ni2+, which is consistent with the pore diffusivity results, in which higher diffu-
sion values for Cu2+ and Zn2+ were obtained, and indicates a higher selectivity of the synthesized 
zeolite 4A for Cu2+ and Zn2+.
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1. Introduction

Wastewater from various anthropogenic activities, 
whether industrial or domestic, is a worrying source of 

environmental pollution due to the high levels of toxic 
substances [1,2]. Depending on the industrial activity, 
these effluents might present a large diversity of chemical 
pollutants. Among the monitored water pollutants, toxic 
metal ions such as Cu2+, Ni2+, and Zn2+ are widely found in 
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aquatic systems and soils [3]. These pollutants are reported 
as harmful to the environment and are related to various 
human health problems, including cancer, organ damage, 
and nervous system diseases [4,5].

Several technologies have been used for remov-
ing toxic metal ions from aqueous systems. The most 
important are reverse osmosis, ion exchange, chemi-
cal precipitation, electrodialysis, and adsorption [6,7]. 
However, these technologies present several limitations 
associated with the high costs of operation, implementa-
tion, and reuse [8,9]. In this context, due to the low cost, 
versatility, simplicity, and high efficiency, the adsorption 
process is a promising alternative [10–13]. A variety of nat-
ural adsorbents, for example, green coconut shell [14,15], 
sugar cane bagasse [16], and natural clays [17] have been 
applied to the removal of different classes of pollutants 
[6]. On the other hand, due to their uniformity in compo-
sition and chemical stability, the use of synthetic adsor-
bents such as zeolites [4,18], alumina [19], and metal oxides 
[20] to the removal of pollutants, particularly toxic metal 
ions from aqueous solutions, offers important advantages 
compared to the natural adsorbents [21,22].

In this sense, zeolites are considered unique adsor-
bents for the removal of toxic metal ions, given their stable 
structure, high porosity, high surface area, pore unifor-
mity, availability, and low cost [23], which also favors 
other application such as catalysis, separation processes, 
and purification of chemical species, among others [24–
26]. Zeolites are defined as hydrated porous aluminosil-
icates with a crystalline structure and open-chain forms. 
They comprise a three-dimensional network of SiO4 and 
AlO4⁻ tetrahedra, linked together by oxygen atoms [27].

The efficiency of zeolites 4A for the adsorption of met-
als ions in an aqueous medium, in single systems, has been 
widely reported [28–30]. Multicomponent systems, on 
the other hand, are more consistent with the complexity 
found in real samples, allowing a better understanding of 
the mechanisms involved in the adsorption processes [31]. 
However, many important issues remain unexplored [10]. 
In this study, we investigate the selectivity of Cu2+, Ni2+, and 
Zn2+ in binary and ternary systems using zeolite 4A.

2. Materials and methods

2.1. Synthesis of zeolite 4A

Zeolite 4A was synthesized based on the method 
described by Thompson and Huber [31]. Initially, in a poly-
propylene beaker, 7.16 g of sodium metasilicate (Na2SiO3) 
was dissolved in 35 mL of NaOH 0.21 mol L–1 and, in a sep-
arate beaker, 5.00 g of NaAlO2 was dissolved in 35 mL of 
NaOH 0.21 mol L–1. The Na2SiO3 solution was then added to 
the NaAlO2 solution, forming a white thick gel. The solution 
formed was subjected to magnetic stirring until complete 
homogenization and then was transferred to a Teflon-lined 
stainless steel autoclave. The reaction mixture was kept 
under static conditions at room temperature for 18 h for 
aging, and then heated at 100°C for 4 h. After cooling, the 
obtained powder was washed several times with distilled 
water until reaching a constant pH, and finally dried at 
70°C overnight.

2.2. Characterization

The characterization of zeolite 4A was performed to 
obtain information on its structural and spectroscopic 
properties. For this, the following techniques were used: 
X-ray diffraction (XRD), thermogravimetry, Fourier-
transform infrared spectroscopy (FTIR), scanning electron 
microscopy (SEM), and cation exchange capacity (CEC) 
determination.

2.2.1. X-ray diffraction

XRD measurements were performed using a PANalytical 
(X-Pert) X-ray powder diffractometer in a Bragg-Brentano 
geometry. The powder patterns were collected in con-
tinuous mode with a 2θ scan speed of 0.5 min–1. Cu-Kα 
(λ = 1.54 Å) radiation was used, with tube operating at 40 kV 
and 25 mA. For these measurements, samples with particle 
sizes below 74 mm (400 mesh) were selected.

2.2.2. Thermogravimetric analysis

Thermogravimetric analysis was performed using a 
Shimadzu model TGA-60 H equipment, at a temperature 
range from 25 to 1,000°C, with a heating rate of 10°C min–1, 
in a synthetic air atmosphere (40 mL min–1).

2.2.3. Fourier-transform infrared spectroscopy

Infrared absorption spectra of synthesized zeolite 
4A and commercial zeolite 4A were obtained using the 
PerkinElmer spectrometer, model FTIR SPECTRUM, in the 
400–4,000 cm–1 region. For these experiments, the samples 
were prepared in a KBr (3 wt.%) wafer.

2.2.4. Scanning electron microscopy

Information about the morphology of zeolite 4A was 
obtained using an electronic microscope FEG, model 
Quanta 450, coupled with energy dispersive X-ray analysis. 
The sample, with a particle size of 200 mesh, was prepared 
onto a carbon double-sided tape on aluminum support and 
coated with a thin layer of gold.

2.2.5. Cation exchange capacity

Zeolite 4A was submitted to cation exchange with 
ammonium ion, following the method described by Vidal 
et al. [18]. Briefly, 1.00 g of zeolite 4A was added to 10 mL 
of 10% (w/v) ammonium chloride solution and stirred for 
8 h. The system was maintained under static conditions for 
16 h. After centrifugation for 5 min at 5,000 rpm, the super-
natant was washed 5 times with distilled water to remove 
ammonium chloride excess. The total nitrogen retained on 
zeolite 4A through the cation exchange process was deter-
mined by the Kjeldahl method.

2.3. Adsorption studies

For all the adsorption experiments, the working solu-
tions of the metal ions were prepared using nitrate salts, 
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Cu(NO3)2·3H2O, Ni(NO3)2·6H2O, and Zn(NO3)2·6H2O, at 
pH 5. This pH was chosen to avoid the precipitation of 
metal ions [32,33].

The Cu2+, Ni2+, and Zn2+ concentrations were determined 
by the external standard method, using Flame Atomic 
Absorption Spectrometer (FAAS) model VARIAN 24ZOFS, 
with an air/acetylene flame and appropriate multi-compo-
nent hollow cathode lamps (HCl). The wavelength used 
for Cu2+, Ni2+, and Zn2+ were 324.8, 232.0 and 213.9 nm, 
respectively.

2.3.1. Dosage effect

Erlenmeyer flasks containing different amounts of zeo-
lite 4A (200 mesh size) were placed in contact with 50 mL 
of 200 mg L–1 multicomponent solution of Cu2+, Ni2+, and 
Zn2+ and kept under stirring at 250 rpm for 6 h at room 
temperature (28°C ± 2°C).

2.3.2. Contact time

125 mL Erlenmeyer flasks containing 0.5 g of zeolite 4A 
(200 mesh size) were placed in contact with 50 mL of 10, 
100, and 200 mg L–1 multicomponent solution (Cu2+, Ni2+, and 
Zn2+) at pH 5.0 and under stirring at 250 rpm, at room tem-
perature (28°C ± 2°C). At predetermined intervals, aliquots 
were removed, filtered, and analyzed by FAAS.

2.3.3. Isotherm modeling

Adsorption isotherms were performed using 50.0 mL 
of single and multi-component solutions (10–1000 mg L–1) 
at pH 5, and 0.5 g of adsorbent. The systems were submit-
ted to stirring at 250 rpm for 2 h until equilibrium, at room 
temperature (28°C ± 2°C). Finally, the material was filtered, 
and the residual concentration was analyzed by FAAS. 
All experiments were performed in duplicates. The adsorp-
tion capacities were calculated using Eq. (1) [34–37]:
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where Qe (mg g–1) is the equilibrium adsorption capac-
ity, C0 (mg L–1) is the initial concentration of the metal 
ion, Ce (mg L–1) is the equilibrium concentration of metal 
ion, V (L) is the volume of the solution, and ma (g) is the 
adsorbent mass.

Equilibrium data obtained were evaluated using the 
following nonlinearized isotherm models:

Langmuir model [38]
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where Qe (mg g–1) is the amount of adsorbed solute per 
gram of adsorbent at equilibrium, KL (L mg–1) is the adsor-
bent and adsorbent interaction constant, Qmax (mg g–1) is the 
maximum adsorption capacity, and Ce (mg L–1) is the concen-
tration of adsorbate at equilibrium.

Freundlich model [39]
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n= 1/  (3)

where Qe (mg g–1) is the amount of solute adsorbed, kF 
(mg g–1)(mg L–1)1/n is Freundlich adsorption capacity con-
stant, Ce (mg L–1) is the equilibrium concentration in solution 
and 1/n is a constant related to surface heterogeneity.

Sips model [40]
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where Qe (mg g–1) is the amount of solute adsorbed, 
QmaxS (mg g–1) is the maximum adsorption capacity, kS (L mg–1) 
is the Sips equilibrium constant, Ce (mg L–1) is the equilib-
rium concentration in solution and nS represents the degree 
of system heterogeneity.

Extended Langmuir model [41]
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where Ci and Cj are the equilibrium concentrations of 
metals in the multicomponent solution, Qmax and ki are 
the constants obtained by the Langmuir model applied 
to the single system, and Qe is the adsorption capacity at 
equilibrium.

2.3.4. Kinetic modeling

The adsorption kinetic study was performed using the 
data obtained from the contact time study. The diffusiv-
ity model was applied considering the mass balance in the 
solid phase and fluid phase [42]. Eqs. (6)–(12) were used to 
determine the kinetic parameters [43,44]:
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Initial conditions
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Boundary conditions
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Mass balance in the liquid phase
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Initial conditions

t C Cb= =0 0,  (11)

where Cb is the bulk liquid phase concentration, Cp is the 
intra-particle liquid phase concentration, qi* is the amount 
of metal retained by the adsorbent [Eq. (2)], εp is the poros-
ity of the particle (zeolite 4A), Va is the volume of the adsor-
bent, Vl is the volume of the liquid, Rp is the particle radius 
of zeolite 4A, Dp is the pore diffusivity coefficient, kF is the 
external coefficient of mass transfer, t is the time and r is 
the radial coordinate.

The kinetic parameters were calculated using the sim-
ulator gPROMS, which is composed of systems of differ-
ential equations and partial algebraic. The radial domain 
was discretized using a third-order orthogonal collocation 
method in finite elements. The mass transfer parameter (Dp) 
was obtained using an optimization package employing 
the heteroscedastic method (gPROMS User Guide v3.2.0, 
2009) [45].

According to the dimensional analysis, the mass transfer 
coefficient (or diffusion coefficient) (kF) can be determined 
using the correlation based on Sherwood (Sh), Schmidt 
(Sc), and Reynolds (Re) numbers, which is valid for iso-
lated spheres. Thus, kF was calculated from the following 
correlation for small particles [46].
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where: for container shaking the peripheral velocity is given 
by:

� � d Nimp
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where Dp (m) is particle diameter, dimp (m) is impeller diame-
ter, ν (m² s⁻¹) is fluid kinematic viscosity, υ (m s–1) is impeller 
peripheral velocity, Dm (m s–1) is metal diffusivity in water 
and N* (rpm) is impeller speed.

The fit of the model to the experimental data was evalu-
ated by applying the root mean square error (RMSE) equa-
tion, as shown in Eq. (17).
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where CSim is the estimated concentration from the model, 
CExp is the experimental concentration, and N is the number 
of measured values. Small RMSE values indicate a better fit 
of the model to the experimental data.

2.3.5. Selectivity

The selectivity (S) was calculated in binary and ternary 
systems at different concentrations using, respectively, 
Eqs. (18) and (19) [47].
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where Q is the concentration of adsorbate in adsorbent 
(mg g–1) and Ce is the adsorbate concentration at equi-
librium (mg L–1).

2.3.6. Competitive adsorption

Competitive adsorption usually occurs in multicom-
ponent systems, and three main possible types of effects 
occur: synergism, antagonism, and noninteraction [48]. 
The interactive effect of each ion metal was evaluated by 
the maximum adsorption capacities, calculated by means 
of the Langmuir model, with or without the coexistence 
of other metal ions in the medium, using the following 
relation:
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where Q0
max is the maximum adsorption for a single sys-

tem and Qm
m

i
a

x
x is the maximum adsorption capacity of the 

multicomponent system, which can be found in Tables 3 
and 7, respectively. Thus, if Qm

m
i
a

x
x/Q0

max > 1, then the adsorp-
tion is promoted by the presence of other metal ions (syn-
ergistic effect); if Qm

m
i
a

x
x/Q0

max = 1, then there is no observed 
interaction; and if Qm

m
i
a

x
x/Q0

max < 1, then the adsorption is 
suppressed by the presence of other metal ions in the 
medium (antagonistic effect) [49].

After determining the type of interaction in the sys-
tem, the rate of adsorption reduction was calculated using 
Eq. (21) [50].
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where ΔY corresponds to the rate of adsorption reduction.

3. Results and discussion

3.1. Zeolite 4A characterization

3.1.1. X-ray diffraction

The X-ray pattern of the synthesized zeolite (Fig. 1a) 
shows good agreement in terms of both peaks location and 
intensity, compared to the XRD pattern of a commercial 
zeolite (Fig. 1b). In addition, as shown by the peak iden-
tification using the ICSD 35119 database, zeolite 4A was 
identified as a single crystalline phase, free of impurities [51].

3.1.2. Thermogravimetric analysis

The thermogravimetry profile for sample zeolite 4A 
(Fig. 2) showed two thermal events, at 194°C and at 348°C, 
which may be associated with the loss of both free and 

physically adsorbed water within zeolite pores. However, 
the temperature difference between them suggests that the 
interaction of water with the zeolite 4A structure occurs in 
a nonuniform manner. In addition, the observed weight loss 
was around 20% at 400°C, which is consistent with water 
release due to condensation of vicinal silanol groups, as 
described in the work of Musyoka et al. [52].

3.1.3. Fourier-transform infrared spectroscopy

Characteristic absorption bands of zeolite 4A are 
observed by FTIR for the synthesized zeolite (Fig. 3a) 
and for the commercial zeolite (Fig. 3b). The band at 
464 cm–1 is attributed to the deformation internal vibra-
tion of the T(Si, Al)–O bond, which corresponds to 
a four-membered double ring (D4-R). At 558 cm–1, a 
band referring to the external vibration of the D4-R 
can be observed. The band at 665 cm–1 is attributed to 
the internal vibrations of symmetrical stretching of the 
T(Si, Al)–O bonds. The band at 1,005 cm–1 is attributed 
to the internal vibrations of the asymmetric stretching of 
the T (Si,Al)–O bonds, and the band at 1,656 cm–1 refers 
to the angular deformation of the hydroxyl group present 

Fig. 1. X-ray patterns for (a) synthesized zeolite 4A, (b) commercial zeolite 4A and (c) zeolite 4A standard.
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in the water molecules. Similar results have been reported 
concerning FTIR studies of zeolite 4A [53–55].

3.1.4. Scanning electron microscopy

Zeolite 4A micrographs obtained by SEM are pre-
sented in Fig. 4. The synthesized zeolite 4A shows uni-
form particle size, which can be clearly observed by the 
presence of particles with ca. 1 µm and with cubic habit, 
characteristic of zeolite 4A [27]. In the micrograph with 
the highest magnification, it is possible to observe that the 
formed grains have smooth faces, with some cubic crystal 
intergrowths.

3.1.5. Cation exchange capacity

The CEC indicated that part of the Na+ present 
in the zeolite 4A sample (Na12Si12Al12O48·27H2O) was 
replaced by NH4

+. The CEC value was 188 mmol NH4
+ 

100 g–1 adsorbent. This value corresponds to 34% when 
compared to the total theoretical value of 547 mmol 
(NH4

+ 100 g–1), which was calculated based on the zeo-
lite 4A unit cell chemical formula. However, the results 
obtained are consistent with the CEC (251.6 mmol NH4

+ 
100 g–1) reported by Ren et al. [56] using acommercial zeolite A.

3.2. Adsorption experiments

The adsorption phenomenon can be influenced by 
several physical-chemical factors in which adsorbent dos-
age, contact time, initial concentration, and pH play major 
roles [57–59]. In this study, we evaluated the influence of 
adsorbent dosage (zeolite 4A), contact time, and initial 
concentration on the adsorption of Cu2+, Ni2+, and Zn2+. 
Given the fact that pH ≅ 5 is a consolidated value in metal 
ion adsorption studies using zeolite, this value was used 
for all the adsorption experiments. Some studies report 
that at this pH the metal ions adsorption is favored due 
to the dissociation of hydroxyl groups, contributing to the 
increase of anionic sites [60]. Furthermore, at high pH (>6), 
the solubility of the ions decreases, favoring precipitation 
and, consequently, hindering the adsorption process [32].

3.2.1. Dosage effect

The minimum amount of the adsorbent required for 
maximum metal ions removal is shown in Fig. 5. Cu2+ 
and Zn2+ removals were 80% (4 g L–1 dosage) and 99% 
(10 g L–1 dosage), respectively. For Ni2+, removals of 40%, 

Fig. 2. Thermogravimetric curve of zeolite 4A in synthetic air 
atmosphere and a heating rate of 40°C min–1.

Fig. 3. Infrared spectra for (a) zeolite 4A and (b) commercial 
zeolite.

Fig. 4. Zeolite 4A micrographs with different magnifications.
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74% and 97% were obtained for dosages of 4, 10, and 
16 g L–1, respectively. The increase in the removal of metal 
ions with the increase in dosage is possibly related to the 
increase in the number of active sites, porosity, and the 
increase in the material surface area [61,62]. The dosage of 
10 g L–1 was chosen for the subsequent batch adsorption 
experiments.

3.2.2. Contact time

Fig. 6 shows the Cu2+, Ni2+, and Zn2+ removal for con-
centrations of 10, 100, and 200 mg L–1 of the multicom-
ponent system as a function of contact time between 
adsorbent–adsorbate. It can be observed in Fig. 6a that 
the Cu2+ and Zn2+ removals at 10 mg L–1 reached approxi-
mately 100%, in the first 10 min. The Ni2+ removal reached 
approximately 65%. After 120 min, the Ni2+ removal was 
close to 100%. On the other hand, the Cu2+, Zn2+, and Ni2+ 
removals at 100 mg L–1 multicomponent solution (Fig. 6b) 
were 99%, 99%, and 40%, respectively, obtained at 10 min. 
For 200 mg L–1 the removals were 91%, 91%, and 27%, for 
Cu2+, Zn2+, and Ni2+, respectively.

The reduction in the removal of metal ions with the 
increase of their concentrations is probably due to the 
effect of competition for the active sites available in the 
material and by the electrostatic interaction [63]. For fur-
ther studies of the adsorption isotherms, a contact time of 
120 min was chosen.

Additionally, considering the initial concentration 
of 200 mg L–1, the Na+ exchanged for the total amount of 
metal ions adsorbed was estimated at approximately 23%, 
which is in line with the value reported by Hui et al. [60]. 
The removal of metal ions in zeolite 4A can be associated 
with a mechanism involving processes of both adsorption 
and ion exchange [64].

3.2.3. Adsorption isotherm

The adsorption isotherms obtained for single and 
multicomponent systems are shown in Fig. 7. For low 

concentrations (Cu2+, Ni2+, and Zn2+), the behavior and the 
magnitudes of adsorption capacity are similar in both sys-
tems. However, for high metal ions concentrations, the 
adsorption capacities were higher for the single system 
than for the multicomponent one, suggesting strong com-
petition at the highest concentrations. The obtained orders 
for adsorption capacity (in mg g–1), for the single and mul-
ticomponent systems, were respectively: Zn (79.27) > 
Cu (70.22) > Ni (37.43) and Cu (58.00) > Zn (56.06) > Ni (25.46).

Experimental data for Cu2+, Ni2+, and Zn2+ are shown 
in Fig. 8 together with the Langmuir, Freundlich, and Sips 
isotherms model adjustments. Table 2 shows the constants 
values from the models, calculated by the non-linear model.

The Langmuir model represents the best fit of the 
experimental data for Cu2+ and Zn2+ (based on the error 

Fig. 5. Percentage of metal ion removal using different adsorbent 
contents, 200 mg L–1 concentration, pH 5.0, multicomponent 
solution, and 6 h contact time.

Fig. 6. Contact time for Cu2+, Ni2+, and Zn2+ for multicomponent 
solutions in different concentrations: (a) 10 mg L–1, (b) 100 mg L–1 
and (c) 200 mg L–1. (200 mesh particle size, pH 5.0 and 10 g L–1 
dosage of zeolite 4A).
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function and R2 values), which might suggest a mono-
layer adsorption mechanism on zeolite 4A surface [65]. 
The Freundlich model proved more suitable for Ni2+, 
indicating the presence of adsorption sites with different 
adsorptive energies [63].

However, analysis of variance (F test) for a 95% con-
fidence level (Table 1) indicated that the Langmuir, 
Freundlich, and Sips models fitted experimental data 
for Cu2+ and Ni2+ (Fcalculated < Ftabulated). For the Zn2+, no sta-
tistical difference is observed (Fcalculated < Ftabulated) for the 
fitting of the Langmuir and Freundlich models. The con-
trary was observed for the Sips model in comparison with 
Freundlich and Langmuir models. (Fcalculated > Ftabulated).

As shown in Table 2, the high values of maximum 
adsorption capacity for Cu2+ and Zn2+ are in conformity with 

the Langmuir and Sips models, whereas low capacity values 
were obtained for Ni2+.

This way, the following orders of maximum 
adsorption capacity were obtained for the Langmuir 

Fig. 7. Comparison between single and multicomponent 
isotherms: (a) Cu2+, (b) Ni2+, and (c) Zn2+ using zeolite 4A. 
Concentration of 200 mg L–1, 0.5 g adsorbent at pH 5.0.

Fig. 8. Experimental and theoretical adsorption isotherms of ions 
(a) Cu2+, (b) Ni2+, and (c) Zn2+ on zeolite 4A, single system.

Table 1
Analysis of variance for the three isothermal models

Cu2+ Ni2+ Zn2+

Fcal Fcal Fcal Ftab

Langmuir/Freundlich 0.208 0.027 0.437 3.889
Langmuir/Sips 0.063 2.070 4.295 3.889
Freundlich/Sips 0.489 1.408 6.356 3.889
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and Sips models, respectively: Cu2+ > Zn2+ > Ni2+ and 
Zn2+ > Cu2+ > Ni2+.

The efficiency of the adsorption process depends both 
on the characteristics of the zeolite and the nature of the 
metal ions [60]. Zeolites, in general, are weakly acidic and, 
therefore, exchangers in sodium form are selective for 
hydrogen. This contributes to raising the pH of the solu-
tion and enables the formation of metal hydroxide [66]. 
The characteristics of metal ions such as ionic radius, 
hydrolysis constant, dehydration energy, and hydrated 
radius, are summarized in Table 3.

According to the data in Table 3, the following 
selectivity sequences are expected: Ni2+ > Cu2+ > Zn2+, 
Zn2+ > Cu2+ > Ni2+ and Cu2+ > Zn2+ > Ni2+, considering 
hydration radius, hydration energy, and hydrolysis con-
stant, respectively [67–69]. Therefore, it is suggested 
that the selectivity sequence obtained from the hydra-
tion energy and the hydrolysis constant are consistent 
with the Qmax sequences obtained by the Langmuir and 
Sips models, respectively. As a consequence, they can 
both be considered critical parameters that affected the 
metal ions adsorption. It is reported that the hydration 

energy of metal ions is one of the factors of high influ-
ence on the adsorption capacity of zeolite 4A [70,71]. 
Metal ions with greater hydration energy and hydro-
lysis constant are preferred to remain in the solution 
phase because of the strong interaction with water mole-
cules [67]. Nonetheless, the hydrolysis constant of metal 
ions depends on the type of metal hydrolysis (MOH+) 
[72], since the cationic complexes can be more strongly 
adsorbed than free metal cations. This behavior is expected 
to occur due to the formation of metal hydroxide com-
plexes, which are thermodynamically more stable and 
easier to be adsorbed than the free metal ion [73,74].

Table 4 presents a comparison of the maximum 
adsorption capacity with the values reported in the liter-
ature for commercial zeolite and zeolite 4A prepared from  
coal fly ash.

3.2.4. Kinetic modeling

The kinetic diffusivity model was applied to esti-
mate the diffusion of Cu2+, Ni2+, and Zn2+ on zeolite 4A, as 
shown in Fig. 9 and Table 5. It can be observed that the 

Table 2
Model parameters obtained of the adsorption isotherms with the zeolite 4A for (Cu2+, Ni2+, and Zn2+) single system

Cu2+ Ni2+ Zn2+

Langmuir

Qexp 70.140 37.260 79.170
Qmax 110.126 ± 12.214 35.777 ± 3.135 79.642 ± 2.440
KL 0.025 ± 0.005 0.037 ± 0.016 0.126 ± 0.014
R2 0.974 0.929 0.988
AIC 28.718 24.440 25.442
SQE 112.336 76.285 71.904

Freundlich

HYBRID 4.752 8.354 4.194
N 1.714 ± 0.203 3.710 ± 0.302 3.121 ± 0.289
kF 5.942 ± 1.556 7.219 ± 0.835 18.072 ± 2.133
R2 0.945 0.984 0.967
AIC 35.783 12.352 36.467
SQE 246.266 16.835 216.561

Sips

HYBRID 11.712 1.826 17.540
QmaxS 82.797 ± 0.010 38.282 ± 6.554 92.903 ± 12.251
nS 0.690 ± 0.138 1.000 ± 0.462 1.000 ± 0.261
kS 0.045 ± 0.010 0.032 ± 0.017 0.078 ± 0.030
R2 0.979 0.906 0.952
AIC 30.306 30.813 43.223
SQE 78.611 84.019 277.251
HYBRID 6.032 8.354 4.194

Akaike’s Information Criterion (AIC); Squared Error (SQE); Hybrid Fractional Error (HYBRID).

Table 3
Physicochemical parameters of Cu2+, Ni2+, and Zn2+

Metal ions Ionic radius (Å) Hydration radius (Å) Hydration energy (kJ mol–1) Hydrolysis constant (pK1)

Zn2+ 0.740 4.300 –2,046 8.960
Cu2+ 0.720 4.190 –2,100 7.960
Ni2+ 0.700 4.040 –2,105 9.860
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calculated values agree with the experimental data, with 
low RMSE values (<10–2). It can also be noted that the 
metal ion concentration in the liquid phase decreases faster 
with the decrease of the initial concentration. Gama et al. 
[75] suggest that this behavior is related to the concentra-
tion of metal ions, as well as to the diffusion and adsorp-
tion of metal ions in the adsorbent pores. However, for 
higher concentrations, the removal rate decreases, probably 
because of the increased competition for the sites.

As it can be observed in Table 5, the increase of the ini-
tial metal ions concentrations leads to the decrease of their 
diffusivity within the pores of zeolite 4A. This occurs in the 
order of magnitude of 103, 103, and 102 for Cu2+, Zn2+, and 
Ni2+, respectively. A likely explanation for this behavior 
may be associated with the reduction of available adsorp-
tion sites with the increase in the initial concentration of the 
metal ions [76]. This behavior may also be related to other 
thermodynamic aspects, as indicated in several studies 
with similar observations [42,77,78].

In contrast, the diffusion coefficient values were cal-
culated by correcting Sh, Sc and Re [Eqs. (12)–(16)] are 
completely independent of the initial concentrations (of 
the ions of interest) and the adsorbent mass [79].

This suggests that, given their high kF values, 
Cu2+ and Zn2+ have greater mobility to break the film 
surrounding the adsorbent particle [46].

3.2.5. Selectivity

The selectivity study was performed to confirm the 
preference for metal ion adsorption on zeolite 4A for both 
binary and ternary systems. Table 6 shows that the selec-
tivity of Cu2+ increases with the increase of concentration, 
whereas the opposite occurs for Zn2+, for the ternary and 
binary systems. This is due to the competition for specific 
adsorption sites, and implies a decrease in the adsorption of 
metal ions [48,80].

Zeolite 4A has less selectivity for Ni2+ for binary 
and ternary systems. This result is consistent with 
those reported in other studies using zeolite 4A 
[60,81]. For the ternary system, the following order 
was obtained: Zn2+ > Cu2+ > Ni2+. Known selectivities 

Table 4
Comparison of maximum adsorption capacities of the synthesized zeolite 4A and with data from literature

Zeolite type Metal Initial concentration (mg L–1) T (°C) Qmax, mg g–1 pH Reference

Commercial zeolite 4A

Cu2+

50–300 25 ± 0.5

53.450

3.0 [60]
Ni2+ 7.900
Zn2+ 31.580
Cr2+ 45.290

Coal fly ash prepared zeolite 4A

Cu2+

50–300 25 ± 0.5

50.450

3.0 [60]
Ni2+ 8.960
Zn2+ 30.800
Cr2+ 41.610

Zeolite 4A
Cu2+

10–1,000 28 ± 0.5
61.482

5.0 This studyNi2+ 31.733
Zn2+ 55.018

Fig. 9. Experimental and theoretical kinetic curves for Cu2+, 
Ni2+, and Zn2+ in multicomponent solutions: (a) 10 mg L–1, 
(b) 100 mg L–1, and (c) 200 mg L–1, using 0.5 g adsorbent at pH 5.0.
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for other types of zeolite are: Pb2+ > Zn2+ > Cd2+ > Cu2+ 
for clinoptilolite [82], Pb2+ > Cd2+ > Cu2+ > Ni2+ for zeo-
lite 4A [83], Pb2+ > Cu2+ > Cd2+ > Ni2+ for zeolite X [83], 
Pb2+ > Cd2+ > Cu2+ > Ni2+ for mordenite [84], and Cr3+ > 
Cu2+ > Zn2+ > Cd2+ > Ni2+ for NaP1 [85]. In general, these 
zeolites show greater preference for Cu2+ and Zn2+ and 
less preference for Ni2+. However, such differences might 
be associated with differences in the properties of the 
zeolites and the experimental techniques used [66].

3.2.6. Competitive adsorption

The competitive constant for (Cu2+, Ni2+, and Zn2+) 
binary and ternary adsorption systems were determined, 
followed by the classification according to the interaction 
effect (Table 7).

The results of capacity ratio (Qm
m

i
a

x
x/Q0

max) for Cu2+ in the 
presence of Zn2+ are shown in Table 7. A value of 0.233 
indicates a decrease of 76.6% in adsorption compared to 

Table 5
Coefficient of diffusion (kF) and pore diffusivity (Dp) as a function of the initial concentration of the multicomponent solution for Cu2+, 
Ni2+, and Zn2+

Metal ions Concentration (mg L–1) kF (cm min–1) Dp (cm² min–1) RMSE

Cu2+

10
12.937

6.657 × 10–5 1.827 × 10–4

100 5.712 × 10–6 6.461 × 10–4

200 6. 643 × 10–8 2.993 × 10–3

Ni2+

10
12.320

1.648 × 10–8 8.253 × 10–4

100 4.655 × 10–9 6.571 × 10–3

200 4.063 × 10–10 9.722 × 10–3

Zn2+

10
12.738

4.201 × 10–5 7.431 × 10–5

100 1.523 × 10–5 2.346 × 10–4

200 9.847 × 10–8 8.283 × 10–3

Table 6
Adsorption selectivity as a function of the initial concentrations of Cu2+, Ni2+, and Zn2+ in the ternary and binary system, using 0.5 g 
adsorbent at pH 5.0

C0 (mg L–1) (Cu2+/Ni2+/Zn2+) (Cu2+/Zn2+) (Cu2+/Ni2+) (Ni2+/Zn2+)

Cu2+ Ni2+ Zn2+ Cu2+ Zn2+ Cu2+ Ni2+ Ni2+ Zn2+

100 0.208 0.018 4.267 0.229 4.365 5.636 0.177 0.151 6.618
200 0.026 0.002 34.844 0.298 3.388 20.238 0.049 0.045 22.359
500 0.383 0.018 2.395 0.577 1.734 184.665 0.005 0.020 51.088
800 5.395 0.051 0.120 1.388 0.720 412.884 0.002 0.038 26.432
1,000 6.084 0.045 0.109 1.520 0.658 132.548 0.008 0.053 18.792

Table 7
Competition and interaction effects of Cu2+, Ni2+, and Zn2+ ions in the binary and ternary adsorption systems. 
Concentration of 200 mg L–1; 0.5 g adsorbent at pH 5.0

Metal Adsorption systems Qm
m

i
a

x
x mg g–1 Competitive constants Interaction effect

Qm
m

i
a

x
x/Q0

max ΔY%

Cu2+

Cu2+/Zn2+ 25.712 0.233 76.652 Antagonistic
Cu2+/Ni2+ 128.232 1.164 –16.441 Synergistic
Cu2+/Ni2+/Zn2+ 61.482 0.558 44.171 Antagonistic

Ni2+

Ni2+/Zn2+ 20.216 0.565 43.494 Antagonistic
Ni2+/Cu2+ 18.460 0.516 48.403 Antagonistic
Ni2+/Cu2+/Zn2+ 31.733 0.887 11.300 Antagonistic

Zn2+

Zn2+/Ni2+ 89.362 1.122 –12.205 Synergistic
Zn2+/Cu2+ 59.064 0.742 25.115 Antagonistic
Zn2+/Cu2+/Ni2+ 55.018 0.691 30.918 Antagonistic
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the single system. A similar trend was observed for adsorp-
tion of Zn2+ in the presence of Cu2+ (Qm

m
i
a

x
x/Q0

max of 0.742), 
with a reduction in adsorption of 25.1%. These results 
indicate an antagonistic effect among the metal ions, par-
ticularly with Zn2+. Sellaoui et al. [49] obtained a similar 
result for adsorption of Pb2+/Hg2+ using a bentonite-alginate 
composite. For the binary systems (Cu2+/Ni2+ and Zn2+/Ni2+), 
it was found that the presence of Ni2+ did not reduce the 
adsorption capacity. However, it can be suggested that Ni2+ 
favors the increase of Qmax for Cu2+ and Zn2+. Therefore, it 
is possible that the Ni2+ adsorption sites are different from 
the ones of Cu2+ and Zn2+, showing the synergistic effect 
between them. In contrast, Cu2+ and Zn2+ had an antagonis-
tic effect of 0.516 and 0.565, respectively, on Ni2+ adsorption. 
This implies an adsorption reduction of 48.4% and 43.5%, 

respectively. The same effect was observed in the ternary 
system, in which there was a reduction of 44.2% in the 
adsorption of Cu2+, 30.9% for Zn2+, and 11.3% for Ni2+.

Similar behavior was observed when adjusting the 
Langmuir model extended to the experimental data of the 
binary and ternary systems (Figs. 10 and 11). In the com-
bination of Cu2+/Ni2+ and Zn2+/Ni2+, the extended model 
presented better adjustment for the Ni2+ experimental data 
(errors of 4.4 and 3.1), confirming that there is no com-
petition of this ion with the other two for the adsorption 
sites. Opposite results were found for Cu2+ and Zn2+, in 
which a significant discrepancy between theoretical and 
experimental data (errors of 100.5 and 61.4, respectively) 
was observed. This indicates that the extended Langmuir 
model does not describe the behavior of Cu2+ and Zn2+, 

Fig. 10. Adjustment of the extended Langmuir model to the experimental data of the binary systems (a, b) Cu2+/Ni2+, (c, d) Cu2+/Zn2+ 
and (e, f) Zn2+/Ni2+.
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confirming their antagonistic effects on Ni2+ adsorption 
onto zeolite. In addition, the extended model showed 
a much better adjustment for Cu2+ (error 4.8) than for 
Zn2+ (error 45.0), in the Cu2+/Zn2+ system. Therefore, it is 
suggested a greater interference of Zn2+ in the adsorp-
tion of Cu2+ than the opposite, corroborating the results  
reported in Table 7.

Regarding the ternary system, a significant differ-
ence was observed between the calculated and experi-
mental data for Cu2+, Ni2+, and Zn2+ (error of 38.9, 22.1 
and 24.0), indicating that the extended Langmuir model 
failed to explain the adsorption of the ternary mixture. 
Thus, the failure of the model suggests a competitive  
adsorption [86,87].

4. Conclusions

The characterization results of the adsorbent material 
used showed that the synthesis performed by the hydro-
thermal method was efficient and led to the formation of 
zeolite 4A as a single crystalline phase. Adsorption effi-
ciency for single and multicomponent system, were respec-
tively Zn2+ > Cu2+ > Ni2+ and Cu2+ > Zn2+ > Ni2+. Langmuir, 
Freundlich and Sips models proved satisfactory in describ-
ing Cu2+ and Ni2+ experimental data. Langmuir and 
Freundlich models describe properly the Zn2+ experimental 
data. The adsorption kinetics were fast for Cu2+ and Zn2+. 
The selectivity was higher for Cu2+ and Zn2+ than for Ni2+, 

for all the studied systems. Therefore, the synthesized zeo-
lite 4A was confirmed to be an effective adsorbent in the 
removal of Cu2+ and Zn2+ from aqueous medium.
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