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a b s t r a c t
Techniques for detecting leakage in water pipe networks have been developed worldwide in order 
to reduce unaccounted-for water quantity and enhance the reliability of the pipe networks. In this 
paper computational algorithms utilizing principal component analysis (PCA) were developed so 
that the algorithms can be used in a realistic water pipe network management situation in which 
the daily flow data of a district metered area (DMA) are needed to be verified for a possible relation 
with a water leak incident. For the improvement of the algorithms, it was assumed that a man-
ager of a water pipe network uses these algorithms every day to test if yesterday’s inflow data to 
a DMA were an outlier according to the PCA computational algorithm. The flow data used in this 
study were analyzed to determine the best flow data size for the field use of the developed PCA 
algorithm. For various flow data sets, which were defined as the smaller sizes of the flow mea-
sured in days than the whole data set available, a reference modeling for the PCA was applied to 
calculate the model outliers by moving the flow data sets day by day. For each DMA the effective 
outlier detection rates (EODRs) were calculated for the whole range of the defined time windows. 
The maximum effective outlier detection rate for a DMA was obtained as the maximum of the cal-
culated EODRs. The process and results of the sensitivity analyses of the model parameters were 
used to suggest guidance on how to determine model parameters for a given flow data.

Keywords:  Principal component analysis; District metered area; Water pipe network; Leak detection; 
Computational algorithm; Flow data

1. Introduction

Water distribution pipe network (WDPN) is one of the 
essential infrastructures needed to sustain a modern liv-
ing. Therefore, proper operation and maintenance of the 
water pipe networks are crucial for the overall health of 
the consumers in cities and more loosely populated regions 
such as rural areas alike.

One of the main challenges faced in the operation 
and maintenance of WDPN in leakage control. In the past 
decades, various methods have been developed worldwide 
for detecting leakage in WDPNs in response to the growing 

concern regarding many problems associated with water 
loss in the WDPNs. El-Zahab and Zayed [1] provided an 
extensive overview of leak detection in general including 
gas pipe leaks in the historical perspective and proposed 
a new phase (or category) of leak detection, that is, the 
identification phase, suggesting the leak detection phases 
as ILLP, identify-localize-locate-pinpoint.

Detecting leaks based on direct observation on the 
network status such as flow and pressure, which are com-
monly classified as hardware methods [2] using infrared 
thermography camera [3,4] ground-penetrating radar [5], 
and noise loggers [6] is time-consuming and requires a great 
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amount of fieldwork with extra costs. Other methods are 
available for leak detection in WDNs such as transient-based 
methods, which focus on direct detection of negative pressure 
waves [7] or burst-induced transient signals [8] and methods 
utilizing well-calibrated hydraulic models [9,10]. However, 
as Wu and Liu [2] pointed out, studies on transient-based 
methods and hydraulic model methods were generally 
conducted using numerical simulations or under heavily 
controlled laboratory environments, not in real-life WDNs.

Meanwhile, there are computational pipeline monitoring 
approaches, which are based on software-based systems or 
data-driven algorithmic monitoring tools that utilize data 
collected from limited instrumentation such as flow and 
pressure measuring devices to detect hydraulic anomalies 
that may indicate pipe leak or commodity release [11].

Data-driven methods are based on the fact that the sta-
tistics of the flow variables through the pipeline change 
when a leak happens and enable researchers to avoid the 
complexity of WDN’s differential dynamic models. As 
Nowicki et al. [12] pointed out, data-driven methods for 
leak detection utilizes the measurement data directly to 
detect a symptom of leakage quickly. This capability of 
the data-driven method is based on the characteristics of 
the method itself which can disregard, to a certain extent, 
the complexity of network modeling and simplify the 
problem of describing the system in terms of mathemati-
cal models to that of extracting numerically important fea-
tures of the operational data of the system with the help 
of statistical modeling methodologies. Contrary to the other 
methods such as hardware-based methods, transient-based 
methods, and methods utilizing hydraulic models, data-
driven methods have been tested under real-life WDN 
conditions for validation and performance evaluations.

Extensive reviews on the data-driven methods were 
conducted by Wu and Liu [2]. According to Wu and Liu 
[2], the data-driven methods can be categorized as classi-
fication methods [13,14], which focus on distinguishing 
bursts from normal data using mainly artificial neural net-
work (ANN) techniques, prediction-classification meth-
ods [15–18], which use normal hydraulic data to build 
prediction models and various data processing techniques 
such as ANN, Bayesian Inference System, and adaptive 
forecasting model, and statistical methods [19,20], which 
generally incorporate statistical process control theory. Each 
of the methods of leak detection categorized by Wu and 
Liu [2] possesses issues and limitations, for example, data 
required for training and testing models and unbalanced 
data class sizes for the classification methods, effects of 
uncertainty in historical data on the accuracy of predicted 
values for the prediction-classification methods, and inap-
propriate distribution assumptions on data for the statistical  
methods.

Although Wu and Liu [2] suggested that the predic-
tion-classification methods are considered as a better tool 
in supporting the decision-making processes involved in 
leak detection due to its ability to take uncertainty in pre-
diction and classification by incorporating some probabi-
listic methods, it is considered that the statistical methods 
still has room to be further developed and applied to real-
life data to find its usefulness in assisting leak detection in 
WDNs. The principal component analysis (PCA) on which 

this paper is based is one of the statistical data analysis tech-
niques among the data-driven methods.

Many researchers with data-driven methods [21–26] 
have utilized pressure data of WDNs due to the relatively 
low costs and easy operability of pressure measuring devices 
[27]. However, flow is accepted as a more effective parameter 
for leak detection [28,29].

The abnormal state of WDN are usually caused by device 
faults (e.g., sensor or pump break down), water leakage in the 
pipe, a significant increase of the water uptake (e.g., caused 
by fire brigades), etc. In many situations, analysis of the cause 
and effects of the abnormal state of WDNs is required to 
deal with a large amount of data regarding the operational 
status of the networks that are hard to handle and process. 
Thanks to the characteristics of the PCA, a multivariate 
statistical analysis method, that can extract essential infor-
mation embedded in a large amount of data and indicate 
the abnormal state of the system using the calculated mea-
sures (T2, SPE and DMOD statistics), it has been used suc-
cessfully in various applications of pattern recognition and 
fault diagnosis Gertler [30] and utilized for the processing of 
the data regarding the operations of WDNs in recent years.

Since the first application of the PCA technique for leak 
detection by Palau et al. [31], several similar research cases 
have appeared. Kazimierz et al. [32] used the idea of apply-
ing several regional PCA models (PCA monitoring mod-
els) for a WDN identified on the basis of spatially local and 
available measurements to conclude about the operational 
state of a WDN, instead of a single global model. The main 
idea of MultiRegional Principal Component Analysis was 
presented on example of a small water network and the 
method was applied to DWDS in Chojnice, Northern Poland.

Adam and Michał [33] described an approach to detect 
leakages in water distribution systems using kernel princi-
pal component analysis (KPCA), which can be considered 
as a non-linear extension of the PCA method and an exam-
ple of machine learning, with a limited number of measure-
ments. Nowicki et al. [12], based on Adam and Michał [33], 
presented a systematic and comprehensive approach to use 
KPCA for fault detection with regard to water leakage and 
provided a quantitative performance comparison between 
PCA and KPCA using a hydraulic model of a WDN for a 
town in Poland which was used to generate values of flows 
and pressures in monitoring nodes in place of measurement 
equipment both during correct operation and simulated 
faults.

Santos-Ruiz et al. [34] proposed a dynamic PCA-based 
methodology for the detection and quantification of leaks 
in an experimental pressurized pipeline. The technique was 
based on an exploratory data analysis of the residuals that 
result from projecting pressure and flow measurements at 
the pipeline ends onto the principal and complementary PCA 
subspaces.

Gertler et al. [35] applied the PCA modeling technique 
for fault diagnosis in water distribution systems based on 
the analysis of pressure variations produced by a leakage in 
the water distribution network. The leakage detection pro-
cedure was performed by comparing real pressure and flow 
data with their estimation using the simulation of the math-
ematical network model as suggested by Pudar and Liggett 
[36]. The technique was applied to a simple hydraulic case 
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study and its particularities and the detection results were 
presented.

Criticizing in the limitations of the works by 
[12,32,35,37,38] imposed by the assumptions on the statis-
tical properties and the consideration on the uncertainty 
of the network variables, Quiñones et al. [39] presented 
evaluation results with regard to the effectiveness of three 
variants of the PCA technique on the performance of leak 
detection in WDNs when only a limited number of pres-
sure measurements are available and assuming an uncer-
tain demand that varies over time with white noise in the 
measurements. The results were obtained from the sim-
ulation of an artificial network with similar and different 
patterns for each demand node.

As described above the PCA technique has been mainly 
applied to artificial pipe networks or mathematical network 
simulation models. In this paper, the PCA technique was 
applied to the recorded inflow data and historical leakage 
records of district metered areas (DMAs) in South Korea 
to evaluate its potential in detecting leaks or bursts in the 
DMAs. Computational algorithms were developed to per-
form the evaluation by setting up the condition in which 
realistic application scenarios of the PCA technique was 
applied. The computational algorithms developed in Park 
et al. [40] based on the PCA were further modified and 
enhanced so that the algorithms can be used in a realistic 
water pipe network management situation in which the 
daily inflow data of a DMA are needed to be verified for 
a possible relation with a water leak incident. The process 
and results of the sensitivity analyses of the model param-
eters were used to suggest guidance on how to determine 
model parameters for a given flow data to maximize the 
leak detection potential of the technique. The developed 
computational algorithms were coded as self-developed 
scripts in the MATLAB environment.

2. Material and methods

2.1. Criterion for determining an outlier for a new data 
set under the PCA modeling

PCA is one of the analytical techniques for analyzing 
multivariate data. It is a technique for converting multidi-
mensional data to low-dimensional data with minimal loss 
of information. The principal concept of PCA is to represent 
the whole information through fewer variables than the orig-
inal data. Principal components are statistically independent 
of each other and there is no loss of information when all 
the main components of the data are used. The first prin-
cipal component best describes the variability of the data, 
and the explanatory powers of the principal components 
diminish gradually.

The PCA consists of a score matrix T of n × f dimensions 
and a loading matrix P of m × f dimensions, where n is the 
number of observations and m the number of variables. 
Eq. (1) shows that an original data matrix may be factorized 
into loading matrix P of m × f dimensions and a residual 
matrix E of n × m dimensions where f is the number of princi-
pal components, and f < m.

X T P ET� � �  (1)

The column of the loading matrix P is called a ‘prin-
cipal component’ and represents an eigenvector for the 
eigenvalue of the variance-covariance matrix of X. The 
eigenvectors are arranged in the order of the correspond-
ing eigenvalues, and the principal components can be 
selected only partially according to the purpose of analysis. 
The most optimal partitioning of the raw data is to mini-
mize the residual matrix by partitioning.

Usually, a portion of principal components is selected 
to convert multidimensional data to low dimensional data. 
The explanatory power of a PCA model depends on the num-
ber of selected principal components for the loading matrix 
of a finalized model. Cumulative percent variance (CPV) 
is used to present the explanatory power of a PCA model 
which is calculated as:
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where λ is the eigenvalue of original matrix X, m is the num-
ber of variables, A is the number of principal components 
which is usually less than m. The number of principal com-
ponents, A, is usually chosen as 70% or 80% for an analysis.

The Hotelling T² statistic or DMOD statistics may be 
used to determine outliers of a PCA model. According to 
Palau et al. [31], the Hotelling T² statistic is more suitable 
for detecting abnormal demand in a pipe network, and 
the DMOD statistic is more suitable for detecting leakage 
in a pipe network. The equation for obtaining a DMOD 
statistic is given by Eqs. (3) and (4), respectively.
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where Si represents the absolute distance to model and S0 the 
normalized distance of the model, K the number of primi-
tive variables, A the number of principal components, N the 
number of observations, eik residual of i-th observation of 
variable K, and A0 1 when it is normalized and 0 otherwise. 
Eq. (5) represents the criterion for determining whether an 
estimated DMOD statistic is an outlier.
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where (Si/S0)2 has an F-Snedecor probability distribution 
with (N-A-1) (K-A) degrees of freedom and (K-A) as para-
meters. For example, if the calculated DMOD statistic (Si/S0)2 
is larger than the p-value of the F-Snedecor probability dis-
tribution, a DMOD statistic of the flow data is determined to 
be an outlier. In this study, as shown in Mpesha et al. [8], the 
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DMOD outlier was used to determine if a set of 24 h inflow 
data of a DMA represent the occurrence of an anomaly in 
the DMA of interest.

Once a PCA model is prepared, it can be used to ver-
ify whether a new data set belongs to the category of out-
liers of a constructed PCA model. This verification is first 
conducted using the loading matrix of a PCA model (P) to 
calculate the score matrix for a new data set as:

T X Pnew new� �  (6)

where Xnew is a new data set to be verified. The residual 
matrix for a new data set is calculated using Eq. (7).

E X T PTnew new new� � �  (7)

The DMOD statistics for the new data set is calculated as 
Eq. (8).
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The new data set is determined to be an outlier of a 
constructed PCA model if the DMOD statistics for the 
new data set satisfies the following:

DMODnew
critical> F  (9)

2.2. Flow data and historical leakage records

This study used the inflow measurement data and 
records of historical leak incidents in a water pipe net-
work in South Korea. The flow data utilized in this study 
were the 24 h flow data of 26 DMAs recorded every hour 
for 843 d, which were from October 28, 2016 to February 
17, 2019. The historical leakage records consisted of the 
dates and locations of the leak incidents in the network. The 
leakage records contained 120 dates which represented the 
dates when leakage repair was completed. Table 1 shows a 
portion of the DMA inflow data of the water pipe network.

2.3. Developed computational algorithms for leak detection

In this study, the computational algorithms developed 
in Park et al. [40] were modified to verify and enhance 
the utility of the algorithms in detecting leak events in 
the real-life maintenance situation of a WDPN. Park et al. 
[40] used the 426 d of the hourly inflow data of 11 DMAs 
to analyze any relevance between the recorded leak events 
and the calculated outliers of the constructed PCA model 
for the flow data in the WDPN under study. In Park et al. 
[40] the potential of the PCA in detecting leaks in a WDPN 
was verified by analyzing the values of the computed 
maximum effective outlier detection rate (M-EODR) and 
the variability of the best time window (BTW) for which 
the M-EODR for each DMA understudy was calculated.

However, the method used in Park et al. [40] to com-
pute the M-EODRs and BTWs did not consider the actual 
circumstance inherent in the managerial decision-making 
processes in the management of WDPNs. That is, the man-
agers may need to make a decision regarding the status of 

the flow data on daily basis to prevent a leak or minimize 
the severity of a possible leak event. In other words, the man-
agers of WDPNs may be confronted with making a proper 
decision whether the current flow data is abnormal and a 
corresponding leak detection work order needs to be issued.

In this regard, the computational algorithms developed 
in Park et al. [40] were modified in this study to verify and 
enhance the applicability of the PCA assuming the manag-
ers in the field run the algorithms every day to check if the 
latest flow data is an outlier of a constructed PCA model. 
For this verification and enhancement of the algorithms, 
the flow data used in this study were analyzed to deter-
mine the best flow data size to run the algorithm for the 
field use of the developed PCA algorithms. To determine 
the best flow data size various flow data sets (FDSs) have 
been tried. A FDS was designed to be identified as the size. 
For example, a FDS may be consisted of 100 d or another 
of 110 d of flow data. A sub-category of FDS was designed 
so that a FDS could occupy a certain range of time for the 
reference PCA modeling and test for outliers. For example, 
a FDS of 100 d could contain flow data from June 1, 2017 to 
August 8, 2017 or from June 2, 2017 to August 9, 2017.

The sizes of FDS were defined to be smaller, which was 
measured in days than the whole data set available. The 
outliers in a FDS were removed to establish a reference 
PCA model for a FDS. Once a reference model of a FDS was 
constructed, the flow data in the next 24 h following the 
FDS under consideration, which was termed as ‘flow data 
to be verified (FDV)‘, was examined using the PCA tech-
nique to determine the FDV of interest was an outlier of 
the reference PCA model of the FDS. After the test for out-
lier for a FDV was finished, a FDS of a particular size was 
moved by 1 d while maintaining its size until there were 
no FDVs left in the available flow data used for the analysis.

The effective outlier detection rate (EODR) defined in 
Park et al. [40] and shown as Eq. (10) was calculated based 
on the calculated outliers of a FDS and the historical leak 
records of a DMA.

EODR number of outliers in ODP
total number of outliers

%� � � �
�
��

�

�
����100  (10)

ODP in Eq. (10) means ‘outlier detection period‘ that 
was used to distinguish valid or effective outliers in calcu-
lating EODRs. An outlier was considered as an effective out-
lier if it is inside an ODP which was defined to be a finite 
number of days, for example, 15 d, and in which the date of 
completion of leakage repair was centered. ‘Total number 
of outliers’ and ‘number of outliers in ODP’ were calculated 
after testing all of the FDVs for the occurrence of outliers 
in the whole flow data available for a DMA by advancing 
a FDS by one day along the timeline after each test for a FDV.

For each DMA the EODRs were calculated for the 
whole range of the defined time windows described in 
Park et al. [40]. The M-EODR for a DMA was obtained 
as the maximum of the calculated EODRs. Fig. 1 shows 
a block representation of the algorithms for calculat-
ing the M-EODR for the field use of the PCA. Each block 
in Fig. 1 represents the sub-algorithm for repeatedly 
calculating the item in a block.
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As shown in Fig. 2, a FDS of 100 d (FDS_100) was used 
to illustrate the process of the PCA modeling and testing 
of outliers for the FDVs of a DMA. The first FDS of the 
FDS_100 was prepared by excluding the whole flow data 
in a day if a portion of the flow data in a day is missing 
or has abnormal values. Then, the first FDS was used to 

build a reference PCA model and the flow data of the next 
day, which is the first FDV (i.e., flow data in the 101st day 
in Fig. 2), were checked to find out if they were an out-
lier of the reference PCA model for the first FDS. Then, 
the first FDS moves to the next day to form the second 
FDS of the FDS_100 while retaining the same number of 
days, which is 100 d, as the first FDS. Therefore, the sec-
ond FDS consisted of the flow data from the second day 
until the 101st day of available flow data. A reference 
PCA modeling technique was applied to the second FDS 
to find out if the flow data in the second FDV, which is 
the 102nd day, were an outlier of the reference PCA model 
constructed using the second FDS. This process contin-
ues until the FDV reaches the end of the whole flow data  
available.

The algorithms were designed so that in case a FDV 
contains missing values they were treated as outliers of 
the reference PCA models of the FDS’s. These outliers 
were assigned a label and were not counted as valid out-
liers, thus, were not used in the calculation of the EODRs. 
These processes of progressing the FDS and calculating the 
EODRs of a DMA were conducted for all of the time win-
dows designed for the analysis. The reference PCA model 
of a FDS was built by applying the PCA algorithm to a FDS 
repeatedly until all outliers in a FDS were removed from a 
FDS. Fig. 3 shows the process of the reference PCA model-
ing utilized in this study.

 
Fig. 1. Block representation of the developed algorithms.

 
Fig. 2. Progression process of a FDS for the PCA outlier detection and EODR calculation.

Table 1
Sample inflow data in the case study area WDPN

Date Hour

Inflow to 
DMA-1 
(m3/h)

Inflow to 
DMA-2 
(m3/h)

Inflow to 
DMA-3 
(m3/h)

2017-06-19 23:00 236 99 138
2017-06-19 24:00 170 83 133
2017-06-20 1:00 130 71 113
2017-06-20 2:00 140 59 17
2017-06-20 3:00 192 54 49
2017-06-20 4:00 378 50 15
2017-06-20 5:00 186 40 17
2017-06-20 6:00 346 53 242
2017-06-20 7:00 710 81 258
2017-06-20 8:00 516 97 293
2017-06-20 9:00 276 92 357
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The algorithm in Fig. 4 is continued from Fig. 3 and 
describes the procedure of advancing a FDS and FDV by 
1 d until the FDV reaches the end of available flow data. 
For each FDS in Fig. 2, the algorithm shown in Fig. 4 was 
applied to determine whether a FDV is an outlier based on 
the reference PCA model of the corresponding FDS.

The algorithms in Figs. 3 and 4 were conducted for all 
of the time windows defined using the method of Park et 
al. [40]. The time windows were defined using ‘center time‘ 
and ‘time range‘ to extract a portion of the hourly flow data. 
The time range was increased from 3 to 23 h in the incre-
ment of 2 h. The center time of each time window was varied 
from 1 to 24 o’clock. Fig. 5 shows three examples of the time 
windows that can be defined for the analyses in this study.

3. Results and discussion

3.1. Sensitivity analyses of the model parameters

The process and results of the sensitivity analyses of the 
model parameters were used to suggest guidance on how 
to determine model parameters and, consequently, the best 
flow data size (the final size of a FDS) to obtain the best 
results of the analyses for a given flow data and historical 
leak records. It was considered that the manager of a WDPN 
will want to use the most current flow data for calculating 
the M-EODR of a DMA due to a fluctuating water demand 
trend in the DMA of interest. In this case, the size of a FDS 
plays an important role in the calculation of M-EODR. 
Therefore, the sensitivity of the size of FDS on M-EODR 
was first conducted among the parameters of the reference 
PCA model, which are the CPV, p-value of the F-distribution 
which was used for the calculation of the critical DMOD, 
and the size of FDS.

For fixed values of the CPV and p-value of the F-distribution 
analyses of the changes in the M-EODRs of a DMA for 
various sizes of the FDS were conducted to determine the 
best FDS size of a DMA. In addition, the manager may 
need to have his/her own criterion regarding the value of 
the M-EODR to decide whether a preemptive leak detection 
work order needs to be issued. In this case, the manager may 
choose the minimum value of the M-EODR to issue the work 
order as close to 100% if he/she wants to save the budget for 
preemptive maintenance as much as possible. In this study, 

the minimum value of the M-EODR to issue the work order 
was considered as 60%. Based on this rule three M-EODR 
categories were defined to analyze the effects of the changes 
in the parameters. The categories were set as M-EODR equal 
to 100%, M-EODR between 60% and 100%, M-EODR less 
than 60%.

The numbers of DMAs that belong to the M-EODR 
categories in Fig. 6 were calculated using the reference mod-
eling technique shown in Figs. 3 and 4 for the FDS sizes of 
30, 60, 90, 120, and 150 d. For example, for the FDS size of 
150 d, 10 DMAs were found to have the M-EODR of 100%.

Although the numbers of DMAs belonging to each 
M-EODR category in Fig. 6 are similar for the various FDS 
sizes used, the manager of a WDPN was assumed to take 
the most appropriate FDS size for further analyses. It was 
considered rational that the best FDS size was the one 
resulting in the greatest number of DMAs with the calcu-
lated M-EODRs greater than a preset minimum value of 
the M-EODR of 60%. Therefore, a FDS of 90 d of flow data 
was chosen for the flow data used in this study. The sen-
sitivities of the CPV and the p-value of the F-distribution 
on the M-EODRs were analyzed for the case of 90 d  
flow data.

3.2. Analysis of the modeling results

Table 2 shows the M-EODRs, the number of leak inci-
dents and a corresponding number of effective outliers 
obtained using the flow data and computational algorithms 
developed in this study with the ODP of 15 d. The default 
values of the parameters that are the FDS size of 90 d, CPV of 
70% and p-value of 0.05 were used in the computation.

 

Fig. 3. Process of a PCA reference modeling for the first FDS.

 

Fig. 4. Computational algorithms for calculating outliers of the 
reference PCA models for the FDS’s of a DMA.
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As shown in Table 2, the case of M-EODR equal to 
100% usually resulted in a very low number of outliers 
compared to the number of leak incidents. For example, 
there was a DMA with 66 leak incidents and two outliers of 
the reference PCA model which are all inside the defined 
ODPs. Therefore, although the performance of the devel-
oped algorithm was turned out to be excellent in detecting 
leak events for this DMA, the reliability of the calculated 
M-EODR of 100% may need to be further investigated 
and it may be decreased if further new FDS’s are collected 
in the future and used for the analysis. Therefore, it was 
considered that the highest EODR next to 100% should 
be chosen for determining managerial decision whether 
a fieldwork order for leak detection needs to be issued. 
For example, the manager of a water pipe network may 

decide not to issue a field leak detection work order for a 
DMA if the highest value of the EODR of a DMA excluding 
100% is less than 60% even if the flow data of a previous 
day of the DMA of interest is calculated as an outlier.

Table 3 shows the results of the analysis similar to 
Table 2 except that Table 3 shows the highest EODR next 
to 100% as the M-EODR of a DMA using the default model 
parameter values. The highest EODR next to 100% is 
termed as ‘practical maximum effective outlier detection 
rate (P-M-EODR)’ in the following description. In Table 3, 
the values of the center time and time range represent the 
time windows of a DMA for the corresponding P-M-EODR.

As shown in Fig. 7, the number of DMAs with the 
M-EODR of greater than 60% changes in great number from 
the CPV of 50% to 90%. Although the number of DMAs with 
the M-EODR of greater than 60% was the greatest for the 
CPV of 90%, the number of DMAs with the M-EODR of 100% 
was relatively high for the CPV of greater than or equal to 
90%. Moreover, for the CPV of greater than or equal to 90% 
the PCA reference modeling encountered a problem of no 
DMOD statistics calculated due to the number of the prin-
cipal components being equal to the number of variables. 
Additionally, for the case of the CPV of greater than or equal 
to 90%, the M-EODR became either 0 or 100% for each Time 
Window. Therefore, due to the aforementioned problem of 
the M-EODR of 100% having a very little number of effec-
tive outliers compared to the number of leak incidents and 
the numerical problem of calculating the DMOD statistics for 
the CPV of over 90%, it was considered that the CPV of 70% 
should be chosen as a default value of the CPV in this study 
for more effective applications of the developed technique.

Fig. 6. Numbers of DMAs that belong to the M-EODR categories 
for various FDS sizes for CPV of 70% and p-value of 0.05.

 Fig. 5. Example of three-time windows.

Table 2
M-EODRs for the DMAs

DMA 1 2 3 4 5 6 7 8 9 10 11 12 13

M-EODR (%) 55 100 100 60 100 100 100 100 100 100 50 86 51
No. of leak records 38 66 41 12 7 36 70 22 60 41 11 10 32
No. of effective outliers 28 2 1 9 1 1 1 1 1 2 6 6 104

DMA 14 15 16 17 18 19 20 21 22 23 24 25 26

M-EODR (%) 75 77 100 67 61 62 64 60 32 100 64 33 49
No. of leak records 17 41 53 14 22 23 29 23 12 30 18 8 19
No. of effective outliers 3 10 11 2 17 34 14 3 46 1 49 1 49
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As shown in Fig. 8 the number of DMAs with the 
M-EODR of greater than 60% was increased from the case 
of the p-value of 0.07 to 0.01. Although the number of DMAs 
with the M-EODR of greater than 60% was the greatest for 
the p-value of 0.01, the number of DMAs with the M-EODR 
of 100%, in that case, was relatively high compared to other 
cases of the p-values. For the cases of the p-value of 0.05 
and 0.03, the number of DMAs that have the M-EODR of 
greater than or equal to 60% was the same. Therefore, the 
p-value of 0.05 may be chosen by a manager of a water dis-
tribution system for a more effective application of the 
technique since the number of DMAs with the M-EODR of 
100% is smaller than that of the p-value of 0.03.

Figs. 9 and 10 show the time windows and center times 
of the DMAs with the P-M-EODR greater than 60% in 
Table 3. Since the time windows shown in Figs. 9 and 10 
correspond to the analysis time interval that has the maxi-
mum number of effective outliers in a day within an ODP, 
the time windows that has the P-M-EODR are considered 
to be representing the approximate time zone in a day in 
which abnormal flows related to leaking incidents usually 
occurred for the DMA of interest. For this case study, the 
center times of about 63% of the DMAs were found to be 
between 9 and 12 o’clock. However, the exact timing of 
the occurrences of the leak events and the occurrences of 

the outliers need to be checked and analyzed using leak 
records with more detailed leak-related information to see 
if there are any delays in the occurrences of the outliers 
after the occurrence of the leak events.

Due to the characteristics of the PCA, it was found out 
that two one-day flow data may have different outlier detec-
tion results. In other words, water flow data on a specific 
day may be calculated as an outlier of the reference PCA 
modeling analysis and another flow data on a different day 
with a similar pattern and amount may not turn out to be 
an outlier of the analysis. Fig. 11 shows an example of the 
two similar flow data, that is the 258th day (July 07, 2017) 
and the 265th day (July 19, 2017) flow data, which have 
different results of the outlier detection.

After applying the outlier calculation algorithm, the 
258th day (July 7, 2017) flow data turned out to be an outlier 
while the 265th day (July 19, 2017) flow data turned out not 
to be an outlier with regard to the critical DMOD statistics 
value for outlier detection, which is 1.61 for both days.

This phenomenon of the outlier calculation results is due 
to the model error calculation process shown in Eqs. (6)–(8). 
Since the loading matrix of a FDS reflects the low dimen-
sional characteristics of the whole FDS and changes 
depending on where it is located in time, the residual error 
matrix of a FDV, which is Enew in Eq. (7), may be different 
even for the same total amount and pattern of water flow 
data. This leads to the changes in the corresponding value 

Table 3
P-M-EODRs for the DMAs

DMA 1 2 3 4 5 6 7 8 9 10 11 12 13

P-M-EODR (%) 55 95 96 60 67 91 92 86 94 85 50 86 51
Center time 11 11 10 10 12 1 12 11 21 12 15 10 17
Time range 3 7 17 7 5 19 3 23 19 9 3 5 21
No. leak records 38 66 41 12 7 36 70 22 60 41 11 10 32
No. of effective outliers 28 42 22 9 4 10 11 6 16 11 6 6 104

DMA 14 15 16 17 18 19 20 21 22 23 24 25 26

P-M-EODR (%) 75 77 94 67 61 62 64 60 32 57 64 33 49
Center time 24 10 19 9 5 23 9 10 11 20 6 9 18
Time range 3 5 3 3 3 3 5 7 7 3 3 3 23
No. leak records 17 41 53 14 22 23 29 23 12 30 18 8 19
No. of effective outliers 3 10 16 2 17 34 14 3 46 17 49 1 49

Fig. 7. Changes of the M-EODRs according to different values for 
the CPV using the p-value of 0.05.

Fig. 8. Changes of the M-EODRs according to different values for 
the p-value using the CPV of 70%.
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of the DMOD statistics of a FDV. Therefore, it is likely that 
a similar daily flow amount and pattern may or may not be 
detected as an outlier. This characteristic of the PCA mod-
eling technique is considered to be useful in detecting an 
anomaly in the flow data of a DMA since it uses the varia-
tions in the flow as a whole to detect a new anomaly of flow.

4. Conclusions

In this study, the computational algorithms developed 
in Park et al. [40] based on the PCA were further modified 
and enhanced so that the algorithms can be used in a realis-
tic water pipe network management situation in which the 
daily inflow data of a DMA are needed to be verified for a 
possible relation with a water leak incident. For the improve-
ment of the algorithms, it was assumed that a manager of 
a water pipe network will use these algorithms every day 
to test if yesterday’s inflow data to a DMA were an outlier 
according to the PCA computational algorithm which would 
mean that the statistically abnormal flow data of a previous 
day may be a result of a possible leak event in the network.

Three M-EODR categories were defined to analyze the 
effects of the changes in the parameters. The categories were 
set as M-EODR equal to 100%, M-EODR between 60% and 
100%, M-EODR less than 60% based on the assumption that 

the minimum value of the M-EODR to issue the work order 
may be set as 60%. The process and results of the sensitiv-
ity analyses of the model parameters were used to suggest 
guidance on how to determine model parameters for a 
given flow data. A rule of thumb that can be used for select-
ing appropriate values of the parameters was determined 

Fig. 9. Time windows resulted in the P-M-EODR of each DMA.

Fig. 10. Center times of the time windows resulted in the P-M-EODR of each DMA.

Fig. 11. Example of the two similar flow data patterns which 
have different results of the outlier detection.
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to select a parameter value that maximizes the number of 
DMAs with M-EODR between 60% and 100%.

For the flow data used in this study, a FDS with 90 d 
of flow data was chosen for the most effective leak detec-
tion analysis of the case study flow data. It was considered 
that the highest EODR next to 100% should be chosen for 
determining managerial decision whether a fieldwork 
order for leak detection needs to be issued due to the reli-
ability of the calculated M-EODRs of 100%. In this study, 
the minimum value of the M-EODR to issue the work 
order was considered as 60%.

The analysis results showed that the range of the 
M-EODR except 100% was from 32% to 96% among 
which 73% of the DMAs had the values of M-EODR as 
over 60%. Therefore, it was concluded that for the DMAs 
with the values of M-EODR as over 60% the computa-
tional algorithms developed in this study may be used to 
assist the manager of a case study network in deciding 
whether a further leak detection field-work order needs 
to be issued based on the calculation results of the devel-
oped algorithms. For DMAs with higher M-EODR may 
give more confidence to the manager in deciding to send 
field crews for finding the leak and its location. Analysis of 
the characteristics of the PCA that produce different out-
lier calculation results due to the model error calculation 
processes for the new data set was also provided.

Since the analysis results greatly depend on the accu-
racy of the data used, DMAs with more accurate leak 
records are expected to produce even better results. The 
developed algorithm may be modified further to analyze 
flow data recorded every 1 min or less instead of an hour 
to assist in the managerial decision-making processes to 
detect and cope with more serious pipe burst accidents. 
A deeper connection between the timing of the occurrences 
of the leak events and the occurrences of the outliers such as 
delay in the occurrences of the outliers after the occurrence 
of leak events may be revealed in future studies utilizing 
more detailed leak-related information.
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