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a b s t r a c t
Response surface methodology (RSM) has been applied to design experiments, analyze opera-
tive parameters, produce models, and optimize operational conditions in water and wastewater 
treatment processes. Although various aspects of RSM application in physicochemical wastewa-
ter treatment processes have been scrutinized, the biological processes are considered more effi-
cient methods for wastewater treatment. Thus, evaluation of RSM application in biological pro-
cesses would be useful research to reduce costs and number of experiments in biological treatment 
processes as well as to achieve its milestones in future studies. In this study, a thorough system-
atic and critical review evaluated two decades of RSM application in conventional biological treat-
ment processes, including aerobic, anaerobic, anoxic, combined, and lagoon processes, to clarify its 
limitations and suggest crucial enhancements for future studies.

Keywords:  Response surface methodology; Biological wastewater treatment; Aerobic; Anaerobic; 
Anoxic; Lagoons

1. Introduction

1.1. Literature review

The growing world population is increasingly producing 
industrial, domestic and agricultural wastewater containing 
various kinds of pollutants, which have induced adverse 
effects associated with aquatic environment pollution and 
human health [1]. To safely release into the environment, 
wastewaters are treated through physical unit operation as 
well as chemical and biological processes. Amongst them, 
the biological processes have been considered for waste-
water treatment due to their reliability, eco-friendly nature, 
and lower costs [1,2]. The major biological processes are 
typically divided into aerobic, anoxic, anaerobic, and com-
bined aerobic/anaerobic/anoxic (A2/O) processes, which are 
shown in Table 1 [3]. As a conventional aerobic suspended 

growth process, the activated sludge (AS) has been widely 
applied for treating different types of wastewater, as many 
research groups have attempted to improve the efficiency 
of this technology [2,4–9]. Other aerobic processes have 
also been implemented in many researches to meet more 
stringent discharge standards over the years, which entail 
membrane bioreactor (MBR) [10–15], moving bed bioreactor 
(MBBR) [16,17], packed-bed reactors [18], rotating biological 
contactors (RBC) [1], and trickling filters (TF) [19].

Anoxic processes (suspended and attached growth) are 
generally implemented to remove nitrogen from waste-
water, which is known as the denitrification process [20]. 
Anaerobic processes such as upflow anaerobic sludge blan-
ket (UASB) [21], anaerobic packed and fluidized bed [22], 
anammox process [23], and anaerobic digestion [24] have 
also been applied due to their general advantages, namely, 
less energy required, less biological sludge production, 
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and less nutrients required. Also, a potential energy 
source (methane), smaller reactor volume, elimination of 
off-gas air pollution, and potential for lower carbon foot-
print are considered as additional merits of the anaerobic 
processes [3]. In addition, to achieve efficient and economical 
solutions of wastewater treatment, the different conditions of 
aerobic, anoxic, and anaerobic have been integrated [25–39].

For the treatment process evaluation, a number of 
parameters should be taken into account in order to ana-
lyze the effective parameters and their interactions on pro-
cess’ performance [40]. The traditional approach, which is 
termed one-factor-at-a-time, analyzes one parameter by 
keeping other parameters at a constant level; and for opti-
mization of a multivariable process, one factor at a time is 
considered. This approach does not deliberate the inter-
plays between the chosen parameters, and it needs a large 
number of experiments to evaluate all chosen parameters 
that make it a time-consuming and high costing method 
[40,41]. In a systematic procedure, the design of experiment 
(DOE) is applied to evaluate the relationships between the 
effective parameters and outputs (responses), which obtain 
the maximum amount of information in the smallest num-
ber of conducted experiments. The choice of a DOE depends 
on the objectives of the experiment and the number of fac-
tors to be investigated and reduces the number of experi-
ments required to be conducted, lead to the decrease of 
the energy and material consumption and the laboratory 
works reduction [41]. Amongst various methods of DOE, 
response surface methodology (RSM) has been most com-
monly considered as an appropriate means to model and 
analyze the processes [41,42]. RSM involves main impacts 
and interplays, and it could additionally present quadratic 
or cubic terms for curvature’ explanation [42,43].

1.2. Research gap

RSM as a convenient tool to design experiments, to 
produce models, and to analyze the effects of the parameters 
has been applied in more than 80 papers of five major bio-
logical wastewater treatment methods, including, aerobic, 
anaerobic, anoxic, combined, and lagoon processes in the 
last two decades. Thus, systematic evaluation of RSM appli-
cation in these processes would be a useful topic in the area 
of RSM application. Application of RSM in physicochemical 
treatment processes has been reviewed by Karimifard and 
Alavi Moghaddam [44] for dye removal from wastewater 
and Nair’s research group for water/wastewater treatment 
processes [40]. However, considering the literature, there 
has been no thorough review paper that sums up the appli-
cation of RSM in biological processes to achieve its mile-
stones in future studies. Hence, the main aim of this study 
is to systematically and critically investigate two decades of 
RSM application in conventional biological processes, to clar-
ify its limitations in such processes, and, most importantly, 
to suggest crucial enhancements for future studies.

2. Tools and methodology

2.1. Tool: RSM as a statistical model

DOE is a systematic method of solving engineering 
problems that employ principles and techniques to produce 

accurately valid outcomes after collecting data with mini-
mum time and costs [45]. Considering the National Institute 
of Standards and Technology (NIST) guidelines, five basic 
steps of a DOE analysis are characterized as follows [43]:

•	 Look precisely at the data and get a holistic perspective 
and construct various graphs.

•	 Produce a theoretical model.
•	 Generate a model from the data via regression methods 

in steps and/or p-value significance of parameter.
•	 Verify the model assumptions via appropriate proce-

dures such as analysis of variance (ANOVA).
•	 Apply the outcomes to address the experimental pur-

poses, clarify significant parameters, and find optimum 
conditions.

Choosing a DOE depends highly on the experiments’ 
objectives and the number of selected parameters. According 
to the experimental purpose, types of designs fall into sev-
eral categories, such as RSM objective, comparative objec-
tive, screening objective, mixture objective, regression model 
objective [43]. The RSM is the most important purpose, in 
which the experiments are designed to approximate interac-
tions as well as quadratic impacts so as to produce a figure of 
the response surface [46].

The origin of RSM was introduced by Box and Wilson 
[47], in which the RSM employing in chemical processes as 
described. This study had a reflective effect on industrial 
applications of experimental design, and consequently, it 
motivated many researchers [48]. After Box and Wilson’s 
primary idea for RSM, the fundamentals of RSM were dis-
cussed in many papers and textbooks [49–56]. The most 
comprehensive discussion is provided in a book [49] written 
by a group of chemists, engineers, and statisticians. During 
the 1950s, classical designs of RSM were divided into two 
extensive categories, including Box–Wilson central com-
posite designs (CCDs) and Box–Behnken designs (BBDs) 
[43], which are described as follows:

2.1.1. Box–Wilson CCDs

A Box–Wilson CCDs is an embedded factorial or frac-
tional–factorial design, which has center points with an 
increased set of star points to approximate the curvature. 
For each factor, if the distance of center point from a fac-
torial	point	 is	 ±1,	 the	distance	 from	a	 star	point	 is	 |α|	>	1.	
The α value is calculated by the number of factors α = (2k)1/4; 
k is the number of factors [57–59]. There are three types of 
CCDs, including central composite circumscribed [CCC, 
and in some cases the central composite rotational (CCR)], 
central composite inscribed (CCI), and central composite 
face-centered (CCF) [41,43]. In Table 2, different types of 
CCDs (for two factors) are described.

2.1.2. Box–Behnken designs

The BBDs have no embedded factorial or fractional–fac-
torial design that makes it an independent quadratic design. 
This design considers the midpoints of edges of the space 
and the center point for combinations. The BBDs require 
three levels of each factor and are of rotatability [41,43]. In 
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comparison with CCDs, these designs are of restricted ability 
for orthogonal blocking [60,61].

2.2. Methodology

2.2.1. Searching methodology

A summarized description of the applied searching 
methodology for this paper is presented in Fig. 1. Through 
Scopus, a thorough search was performed in February 2020, 
the world’s largest database for peer-reviewed literature with 
a wide range of disciplines to address the research query and 
ensure the systematic quest. The Scopus content comes from 
over 5,000 publishers worldwide that must be reviewed and 
selected by an independent Content Selection and Advisory 
Board, which provides reliable information and data for 
researchers [62].

In this research, a systematic review of the published 
literature on the application of RSM in biological wastewa-
ter treatment was performed using qualitative data analysis 
guidelines. Based on the authors’ experiences, four initial 
keywords, including “response,” “surface,” “method,” and 
“wastewater” were determined and resulted in over 2500 
published research works. In the next step, the abstracts of the 
papers were precisely evaluated in terms of “Subject Area,” 

“Document Type,” and “Language,” and consequently, the 
irrelevant published works were eliminated according to the 
exact purpose of the present study. This study focused on the 
papers that were published in international scientific jour-
nals and excluded “Book chapters,” “Conference papers,” 
“Reviews and Textbooks”. The language of papers was also 
restricted to “English”. In addition, the works, which applied 
the RSM to the activated sludge models, were ignored due 
to their different approaches. Finally, amongst more than 
2,500 papers, 84 papers were chosen to conduct the current 
review.

2.2.2. Analysis methodology

According to the main aim of this study, two approaches, 
including “informative” and “critical,” were considered. 
In the “informative” approach, distribution trends of the 
related papers by major biological processes, year of pub-
lication, journals, and correspondence authors’ country/
nationality were analyzed. The final 84 documents were 
carefully re-assessed to avoid the possible inaccuracies of 
Scopus’ analysis section. In the “critical” approach, as illus-
trated in Fig. 2, application of RSM and applied software 
for five major processes were analyzed according to the 
leading textbook of wastewater treatment [3]. In addition, 

 

Fig. 1. Searching methodology in the present study.
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in each paper, the applied parameters and the related 
responses of the models were classified, and finally, the 
most prominent evaluated parameters were found for each 
biological process.

3. Results and discussion

3.1. Distribution trends of results

In this study, distribution trends of the 84 selected 
papers were investigated according to three perspectives, 
including major biological processes, year of publication 
and journals, and correspondence authors’ country/nation-
ality, which are described as follows:

3.1.1. Classification by major biological processes

According to the aim of this study and due to the main 
biological processes for wastewater treatment (Table 1), 
every 84 papers were thoroughly reviewed to classify the 
applied biological processes (Fig. A1). The results showed 
that the most application of RSM in biological processes was 
in the aerobic (50% of 84 papers) and the combined aerobic/
anaerobic/anoxic processes (33% of 84 papers). In aerobic 
processes, the AS, MBBR, MBR, RBC, and TF were identified 
to be precisely analyzed in terms of RSM application.

3.1.2. Classification by year of publication and journals

Distribution of the 84 selected papers by year of pub-
lication, the related journals as well as their quartiles rank 
is presented in Fig. 3. As is shown in Fig. 3, the RSM appli-
cation in biological wastewater treatment has initiated 
since 2009 and has been significantly increased in the last 
two decades. The most published papers were in 2014 and 
2017 (35% of 84 papers). In the previous two decades, about 
47 journals contributed to publishing 84 papers, and the 
top five journals published papers are listed as follows:

•	 Desalination and Water Treatment: 13 papers,
•	 Bioresource Technology: 7 papers,
•	 Journal of Environmental Chemical Engineering: 4 papers,
•	 Journal of Environmental Management: 4 papers,
•	 Process Safety and Environmental Protection: 4 papers.

More than 70% of the journals are of Quartiles rank of Q1 
and Q2.

Classification by correspondence authors’ country: 
Distribution of the papers by the correspondence authors’ 
country is presented in Fig. 4. As is shown, the largest num-
ber of studies were conducted in Iran with 36 publications 
(about 43%); Furthermore, China, Malaysia, and India, 
altogether, published more than 30 papers in this field. As 
a result, the application of RSM in biological wastewater 
treatment processes has been mainly used by developing 
countries more than that of developed countries; it may be 
related to the limited funds allocated to scientific researches 
in the developing countries. In addition, the list of top uni-
versities/research centers and a number of their published 
papers is provided as below:

•	 Razi University, Iran (30 publications)
•	 Kermanshah University of Medical Sciences, Iran (12 

publications)
•	 Universiti Teknologi Malaysia, Malaysia (6 publications)
•	 Hamedan University of Medical Sciences (5 publications)
•	 Ryerson University, Canada; Hangzhou Normal 

University, China; Babol Noshirvani University of 
Technology, Iran; and Universiti Sains Malaysia, Malaysia 
(all with 4 publications)

3.2. Critical procedure of RSM application 
in biological treatment processes

In this section, the 84 classified papers have been pre-
cisely investigated according to the main biological pro-
cesses for wastewater treatment (Table 1). Hence, the selected 
papers classified in separate tables with emphasis on 
detailed information, including the following items:
•	 Year of publication
•	 RSM: including design method and software
•	 Treatment process: including the type of wastewater and 

method of treatment
•	 Model: including parameters and responses

3.2.1. Aerobic processes

An aerobic process occurs in the presence of free dis-
solved oxygen, which is conventionally applied in biological 

 

Fig. 2. Critical analysis procedure used in the present study.
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wastewater treatment [3]. As is shown in Table 3, all papers 
related to the aerobic process, including AS, MBBR, MBR, 
RBC, and TF with the application of RSM (42 out of 84 
papers), have been published between 2009 to 2019. Also, 
more than 85% of the papers (36 out of 42 papers) applied 
CCD of RSM, and more than 75% (33 out of 42 papers) used 
Design-Expert software for the design of their experiments. 
In case of the wastewater type, 42 studies used real wastewa-
ters including hospital [63,64], pulp and paper [65], munic-
ipal [18,66–69], dairy [2,70], industrial [71,72], leachate [73], 
textile dying [74–76], slaughterhouse [77], woodchips [78], 
and oil refinery [79] and the rest of the studies applied syn-
thetic wastewater [80–98].

According to Table 3, evaluation of effective parameters 
and their interactions through RSM are presented for aerobic 
processes. The main important parameters were initial pollut-
ant concentration, hydraulic retention time (HRT), biomass 
concentration, aeration rate, and solids retention time (SRT). 
Also, about 75% of the papers had more than one response. For 
more details, some of these papers were described as follows:

Khondabi et al. [79] applied the CCD method of RSM to 
evaluate the RBC process for the treatment of real oil refinery 
wastewater. Three independent variables with three levels, 
including temperature (35°C, 40°C, and 45°C), rotational 
speed (2, 8, and 14 rpm), and disc submergence (30%, 40%, 
and 50%) were investigated to find their effects on chemical 
oxygen demand (COD) and phenol removals. The optimum 

amount of removals achieved using RSM were 94.25% and 
81.09% for phenol and COD, respectively.

Karami et al. [63] used the RSM method for the AS pro-
cess so as to evaluate two independent parameters’ effect 
(biomass concentration and HRT) on COD removal efficiency, 
turbidity reduction and sludge volume index (SVI) for treat-
ing real hospital wastewater. The CCD method was applied 
to design the experiments with 3 levels for each independent 
factor, and the experiments were implemented in two lev-
els: with sonication and without sonication. In addition, the 
simultaneous optimum conditions to meet all the responses’ 
limitations	(COD	removal	>	90%,	effluent	turbidity	<	3	NTU,	
and	SVI	<	90	mL/g)	were	achieved	MLSS	=	7,000	mg/L	and	
HRT = 5 h with sonication.

Qaderi et al. [90] applied the RSM design for treating 
synthetic wastewater using the MBBR process and three 
independent variables, including retention time, influent 
total petroleum hydrocarbon (TPH), and media filling ratio, 
as well as interactions between variables, were evaluated on 
TPH removal efficiency. The highest removal efficiency 97% 
was obtained in retention time = 23 h, wastewater feed con-
centration = 164.78 m/L, and media filling ratio = 45%.

Shim et al. [92] implemented the BBD method of RSM 
in the MBR process to determine the detachment efficiency 
of bio-cakes for treating synthetic wastewater. For this pur-
pose, the influence of aeration rate, bead number, and bead 
diameter with three levels (high = +1, middle = 0, low = –1) 

Table 1
Main biological processes for wastewater treatment [3]

Type Suspended/attached Common name

Aerobic processes

Suspended growth

Activated sludge process (AS)
Aerated lagoons
Aerobic digestion
Membrane bioreactor (MBR)
Nitritation process

Attached growth

Biological aerated process
Moving bed bioreactor (MBBR)
Packed-bed reactors
Rotating biological contactors (RBC)
Trickling filters

Hybrid processes
Trickling filters/activated sludge
Integrated fixed film activated sludge (IFAS)

Anoxic processes
Suspended growth Suspended growth denitrification
Attached growth Attached growth denitrification filter

Anaerobic processes

Suspended growth
Anaerobic contact processes
Anaerobic digestion
Anammox process

Attached growth Anaerobic packed and fluidized bed
Sludge blanket Upflow anaerobic sludge blanket (UASB)
Hybrid Upflow sludge blanket/attached growth

Combined aerobic, anoxic, and 
anaerobic processes

Suspended growth Single or multi stage process, various proprietary processes

Hybrid
Single or multi stage suspended growth processes with fixed film 
media

Lagoon processes – –
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was investigated. The optimal conditions were also achieved 
using MINITAB optimizer with 0.057 m3/h, 140 beads, and 
3.8 mm for aeration rate, bead number, and bead diameter, 
respectively.

3.2.2. Anaerobic processes

An anaerobic process takes place in the absence of free 
dissolved oxygen which produces biomass, methane, and 
carbon dioxide gas as final products [3]. As is shown in 
Table 4, all papers related to anaerobic process including 
UASB, anaerobic contact processes, and anaerobic digestion 
with the application of RSM (8 out of 84 papers) were pub-
lished between 2010 to 2019. More than 60% of the papers 
applied CCD and Design-Expert software for the design of 
their experiments. Both real (pulp and paper industry [103], 
biodiesel [104], municipal [105], swine [105], and brewery 
[106]) and synthetic wastewater [21,107–109] were used in 
the 8 anaerobic processes. Amongst the 8 papers, two of them 
were described in the following paragraph to clarify more 
details about RSM application in an anaerobic process.

For instance, Najib et al. [21] evaluated the UASB to treat 
both real and synthetic wastewater; using the CCF method 
of RSM, the effect of independent parameters, including pH, 
initial SO4

2–, COD/SO4
2– ratio, and CODethanol/CODtotal ratio, 

have been investigated on sulfate removal efficiency. Also, 

the sulfate removal was achieved 97.87% at optimum con-
ditions of 7.19, 2,153.15 mg/L, 2.72, and 1 for pH, initial SO4

2–, 
COD/SO4

2– ratio, and CODethanol/CODtotal ratio, respectively.
Boonsawang et al. [104] employed BBD to evaluate the 

anaerobic contact process for treating biodiesel wastewater. 
Three independent variables with three levels, including pH, 
organic loading rate (OLR) (g COD/L d), and HRT (h) were 
investigated for two acidogenic and methanogenic reactors, 
separately. COD removal (%) and biogas production (L/d) 
were considered as the responses for the methanogenic 
reactor, and COD removal, long chain fatty acid (LCFA) 
consumption, and volatile fatty acid (VFA) production were 
three responses for the acidogenic reactor.

3.2.3. Anoxic processes

According to the results, only one study (out of 84 papers) 
implemented the RSM method in an anoxic process. Zhang 
et al. [20] applied the attached growth denitrification filter 
to treat real industrial wastewater. They investigated the 
HRT effects and influent (COD and NO3–N) concentrations 
on NO3 removal efficiency and improved the parameters’ 
conditions to predict the optimum responses. Also, to scru-
tinize the response surface model additional tests excluding 
axial, center, and factorial points were done in other two 
solid-phase denitrification biofilters in the same operating 

 

Fig. 3. Distribution of papers by year of publication, the related journals as well as their quartiles rank.
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Table 2
Various types of CCDs by two factors example [41,43]

Type of CCDs Abbreviation Description Pictorial representation

Circumscribed CCC
It is the original form of the CCD. The star points have same distance α 
from the center. For all factors, the star points create new extremes for 
the low and high settings. This design requires 5 levels for each factor.

Face-centered CCF
The star points are at the center of each face of the factorial space 
(α = ±1). This design requires 3 levels of each factor.

Inscribed CCI

If the factor settings have specified limits, the star points were designed 
using the factor settings and generates a factorial or fractional factorial 
design within those limits. (CCI design is a scaled down of CCC design 
with each factor level of the CCC design divided by α to produce the 
CCI design). This design requires 5 levels of each factor.

In some cases, the central composite rotational (CCR) is applied rather than CCC.
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Distribution of contribution in the 84 selected papers by the country of correspondence authors.
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conditions of the CCD experiment; relative error between 3.7 
and 6.7% confirmed the agreeable relation of responses with 
the predicted values.

3.2.4. Combined aerobic/anaerobic/anoxic processes

In order to achieve efficient and cost-effective treatment 
of wastewater, different conditions of aerobic, anoxic, and 
anaerobic are combined with each other [3]. As is shown in 
Table 5, all papers related to combined processes with the 
application of RSM (28 out of 84 papers) were studied between 
2009 to 2019. Also, more than 75% of the papers (24 out of 84 
papers) implemented CCD of RSM and Design-Expert soft-
ware. For more details of the application of RSM in combined 
processes, five papers were elaborated on as follows.

Srisuwun et al. [110] investigated an anaerobic sequenc-
ing batch reactors (SBR) system for treating synthetic waste-
water through the CCD method, during which effluent of 
reactive red 159 (mg/L), decolorization (%), and decolor-
ization rate (g/L h) were evaluated. At optimum conditions 
of independent variables (reactive red 159 concentra-
tion = 6,500 mg/L, SRT = 20 d, and HRT = 8 d) decolorization 
efficiency was achieved 97.68% ± 0.74%.

Mansouri and Zinatizadeh [111] used the CCF method 
to evaluate a combined process of two feeding regimes in 
AS reactors including batch fed (SBR) with intermittent aer-
ation and continuous fed (up-flow aerobic/anoxic sludge 
fixed film (UAASFF) bioreactor) for P and N removal in 
synthetic wastewater. Three effective parameters entailing 
retention time (HRT), aeration time, and COD:N:P ratio 
were opted for analyzing purposes. As a result, the UAASFF 
bioreactor, as opposed to the SBR, was confirmed to be a 
proper bioreactor with higher nutrients removal efficiency 
as well as at lower HRT.

Wang et al. [23] used the BBD method in an alternating 
aeration MBR to investigate simultaneous partial-nitrifica-
tion, denitrification, and anammox process for total nitro-
gen (TN) and COD removal from synthetic wastewater. The 
independent variables of influent carbon to nitrogen (C/N) 
ratio, anaerobic period (min), and airflow (L/min) were 
evaluated through RSM so as to reach optimal conditions 
(C/N = 0.46, aerobic/anaerobic = 2.6 min, and airflow = 0.50 L/
min). Finally, optimum TN removal and COD removal were 
achieved at 92.4% and 98.1%, respectively.

Akhbari et al. [112] evaluated independent parameters’ 
effects (Total HRT, recirculation ratio: from aerobic to anoxic 
zone, COD/N/P, and speed of rotating disks) on COD removal, 
TN removal, effluent NO3 and phosphorus removal through 
the CCD design method in a combined AS and RBC system 
for treating synthetic wastewater. In order to optimize the 
responses, TCOD removal, effluent NO3

–, and TN and total 
phosphorus	 (TP)	 removal	were	 limited	 to	 >90%,	 <10	mg/L,	
>70%,	 and	 >74%,	 respectively.	 At	 an	 optimum	 point	 with	
HRT = 18.3 h, rotating disks speed = 10 rpm, COD/N/P = 12, 
and recirculation ratio = 2.5 of the aerobic unit, COD, TN, and 
TP removals were obtained 62%, 22%, and 57%, respectively.

Kim et al. [113] applied multiple RSM to model and opti-
mize the selected variables dissolved oxygen (DO set point, 
wasted-sludge, and internal recycling) in a standard anaero-
bic/anoxic/oxic (A2O) process for biological wastewater. Two 
responses of N removal and P removal were simultaneously 

optimized through maximized desirability function, con-
sequently, at optimal operating conditions of 1, 27.5 g/m3, 
and 3,850 g/m3 for DO set point, wasted-sludge, and inter-
nal recycling, respectively, the high removal efficiency of 
N = 78% and P = 80% were obtained.

3.2.5. Lagoon processes

As is shown in Table 6, all papers related to the lagoon 
process with the application of RSM (5 out of 84 papers) 
were published between 2013 to 2019. Also, CCD of RSM 
and Design-Expert software was applied for the design 
of the lagoon process experiments in most of the stud-
ies. For instance, Qaderi et al. [137] scrutinized the phe-
nol removal in serial stabilization ponds with synthetic 
wastewater. Two independent variables of temperature 
and initial phenol concentration were used in RSM exper-
imental design. According to the applied model, optimum 
phenol removal was obtained 42.1% at optimal conditions 
of 14.20°C and 109.58 mg/L for temperature and initial 
phenol concentration, respectively.

3.2.6. Overall discussion

RSM is an appropriate tool to design and optimize var-
ious biological processes. In the current study, 84 papers 
of two decades have been comprehensively scrutinized to 
reveal the detailed application of RSM in biological treat-
ment processes. Using RSM in aerobic, anaerobic, anoxic, 
combined and lagoon processes has been evaluated by 
numerous research groups. However, 84 studies are all 
the researches implemented in the application of RSM in 
biological treatment processes, while there is still a great 
potential for more studies. In addition, the biological pro-
cesses that applied RSM could enhance their approach in 
a different stage of modeling and optimization. According 
to Fig. 5, the percentage of the 84 studies is categorized into 
five main biological treatment methods. As is shown, 50% 
of the papers studied aerobic processes that applied RSM, in 
which 36 types of independent parameters were considered 
in RSM design. Also, about 33% of the articles were related 
to combined A2O processes with 31 types of independent 
parameters. Also, Table 7 illustrates the most prominent 
evaluated parameters of RSM for each biological process 
used among the 84 analyzed papers. According to Table 7, 
the important parameters used in the majority of RSM mod-
els were classified separately for each biological process, 
which could reveal the significant effective parameters in 
biological processes. As is shown in Table 7, initial pollutant 
concentration (mg/L) was the most significant parameter in 
all aerobic, anaerobic, anoxic, combined, and lagoon pro-
cesses. For instance, this parameter was applied 18 times in 
aerobic processes (12 times in AS process, 5 times in MBBR 
process, and 1 in TF process). In addition, being applied 
8 times anaerobic and 12 times of the combined methods 
reveal the importance of the initial pollutant concentration 
in the RSM design of biological methods. The second sig-
nificant parameter was the HRT (h or day), which the most 
used was in aerobic and combined processes. The next 
important parameters were biomass concentration (mg/L), 
airflow rate (L/min), SRT (day), temperature (°C), and 
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initial pH, respectively. Some other parameters such as DO 
(mg/L), aeration position, disks rotating speed, bead diam-
eter, type of carrier, and so forth were used once in some 
special conditions which were classified as others in Table 7. 
All of the other parameters are presented in Table A1.

According to Tables 3–6, more than 58% of the articles 
used 3 parameters in the design of RSM through CCD and 
BBD. Also, about 27% and 11% of papers were used 2 and 
4 parameters, respectively, and approximately 4% of papers 

applied 5 factors using the CCD method. According to Fig. 6, 
82% of 84 papers employed the CCD approach that could 
be related to the capability of this approach. CCD approach 
could accurately fit a full-quadratic and linear model by 
evaluating five levels of variables, consider extreme vari-
able combinations with an effective approximation of first 
and second-order polynomial terms. The BBD approach 
was used in about 18% of the papers, which could be 
attributed to the lack of extreme variable combinations in 

 Fig. 5. Major biological processes percentage and types of independent parameters used for RSM design.

 
Fig. 6. Pie charts of RSM characteristics used in the chosen 84 papers according to each major biological treatment method: 
(a) number of RSM methods and (b) number of used software.
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comparison with CCD and no examination of borderline 
regions, leading to a lower number of degrees of freedom.

As presented in Fig. 6, 76% of the papers incorporated 
Design-Expert software to simulate and optimize the bio-
logical processes through RSM. The majority usage of 
Design-Expert was because of its specialty in DOE as well 
as its user-friendliness. MINITAB was also applied in about 
10% of the papers. Other software such as MATLAB and the 
researches that did not mention the type of software was 
categorized in the “other” section. Detailed information 
of the RSM method and software applied in 84 studies are 
presented in Table A2.

4. Conclusion and future perspectives

The current study reviewed 84 papers of RSM application 
in major biological treatment processes, including aerobic, 
anaerobic, anoxic, combined, and lagoon processes. Amongst 
different DOE methods, the application of RSM for biological 
processes, initiated in 2009, was significantly grown in the 
last two decades; and the most published papers belonged 
to 2014 and 2017. According to the current review, regard-
less of RSM restrictions (like errors with discrete parameters 
and imprecision of extrapolation beyond experimental lim-
its), numerous researchers have applied it as a convenient 
tool for designing, modeling, predicting, and optimizing the 
biological wastewater treatment processes with satisfactory 
precision. Consequently, most of the journals in the environ-
mental engineering field have a fruitful history in publish-
ing papers related to applying RSM in biological treatment 
methods. But there has been no thorough review paper to 
sum up the application of RSM in biological treatment pro-
cesses to achieve its milestones in future studies.

According to the systematic approach, the most appli-
cation of RSM in biological processes were in the aerobic, 
the combined, and the anoxic processes, respectively. In 
the last two decades, about 47 journals had contributed to 
publishing the 84 papers, and “Desalination and Water 
Treatment” and “Bioresource Technology” was in the top 
with 13 and 7 papers, respectively. Furthermore, Quartiles 
rank of more than 70% of the journals were Q1 and Q2. As 
a result, the application of RSM in biological wastewater 
treatment processes has been mainly applied by develop-
ing countries more than that of developed countries. The 
largest number of studies were conducted in Iran, with 36 
publications; Furthermore, China, Malaysia, and India, alto-
gether, also published more than 30 papers in this field. The 
Razi University of Iran was on the top list of universities/
research centers that published more studies in this field.

According to the critical approach, more than 80% of 
the 84 papers applied the CCD approach of RSM, which is 
related to the capabilities of this approach. The majority of 
researchers evaluated three or less parameters; and the pre-
dominant parameters in all biological processes were initial 
pollutant concentration, HRT (h or day), biomass concen-
tration, and airflow rate. In addition, most of the selected 
papers had more than one response, and the pollutant 
removal efficiency was the most popular response. As con-
venient software for the RSM, Design-Expert and MINITAB 
were mostly applied.

The appropriate RSM application could provide out-
standing design and optimization of biological wastewater 

treatment processes. Also, based on the obtained results of 
this paper, the main gaps of this field will be mentioned as 
follows:

•	 Further research to understand the design capabilities of 
strategies other than CCD to researches with a high num-
ber of parameters due to the nature of biological waste-
water treatment.

•	 More evaluation on utilizing the RSM to model the real 
biological wastewaters (Municipal/Industrial) to investi-
gate this methodology’s capability in real environments.

•	 Noticing other responses along with the pollutant 
removal efficiency, like cost, is highly encouraged. In this 
rule, techno-economical evaluation research could be 
useful for further studies in this field.

•	 Presenting several optimization scenarios via a “multi-re-
sponse optimization approach” can be investigated as 
prospective researches. This approach can expand the 
logic of optimization in various possibilities, resulting in 
a well-understanding process.

These research gaps will be valuable to those who are 
generally involved in the application of biological treatment 
processes and RSM for their future research perspectives.
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Appendices

Table A1
Other parameters used in RSM of 84 studies

Biological 
process

Parameters used in RSM

Aerobic Flow rate (mL/min) or (L/h) Mixing (min)
Different wastewaters ratio (%) Bead number
Zn concentration (mg/L) Bead diameter (mm)
CO concentration (mg/L) Disks rotating speed (rpm)
Mo concentration (mg/L) Flow rate (mL/min) or (L/h)
Sorbent dosage (g/L) Different wastewaters ratio (%)
Ozone concentration was controlled as feed-gas and off-gas Zn concentration (mg/L)
Inlet H2O2 (mg/L) CO concentration (mg/L)
Calcium ion (mM) Mo concentration (mg/L)
Media filling ratio (%) Sorbent dosage (g/L)
Agitation rate (rpm)/rotational velocity (rpm) Ozone concentration was controlled as 

feed-gas and off-gas
COD/N/P ratio Inlet H2O2 (mg/L)
Impeller diameter Calcium ion (mM)
Organic loading rate (COD) (mg/L d) Media filling ratio (%)
Carbon source Agitation rate (rpm)/rotational velocity (rpm)
Biomass support (%, v/v) COD/N/P ratio
SLR (kg COD/(kg MLSS d)) Impeller diameter
Internal recirculation from aerobic to anoxic zone (R) Organic loading rate (COD) (mg/L d)
Number of working aerators Carbon source
DO (mg/L) Biomass support (%, v/v)
NH4

+/NH4
+NO3 ratio SLR (kg COD/(kg MLSS d))

Aeration position (cm) Aeration time (h or min)
Cycle time (h)/Cycling ratio/Exchange ratio

Anaerobic Upflow velocity (m/h)
COD/SO4

2– ratio
CODethanol/CODtotal ratio
Organic loading rate (OLR) (g COD/(L d))
Upflow velocity (m/h)

Combined COD/nitrogen ratio (COD/N) Circulation rate (L/h)
COD:N:P ratio Operation time (day)
DO (mg/L) Organic loading rates (OLR) (g COD/L d)
Glucose concentration (mg/L) Internal recycling
Nitrate recycle ratio DO set point
Aeration time mode Wasted sludge
F/M ratio Influent C/N ratio
First/second volumetric feeding ratio/First anaerobic/aerobic 
(an/oxic) time ratio/Second an/oxic time ratio

Flow rate (mL/min)

Aeration mode Ca concentration (mg/L)
Substrate concentration (mg/L) Anaerobic period (min)
Biofilm carrier (g/L) Aeration time (h or min)
Carbon source (mg/L) Cycle time (h)/Cycling ratio/Exchange ratio

Anoxic –
Lagoons Filler thickness (cm)

Filler size (mm)
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Fig. A1. Number of major biological processes in 84 selected papers according to [3].

Table A2
RSM method and software applied in 84 studies

Type of biological process
Number of RSM method Number of software

CCD/CCF/CCR (CCC) BBD Design-Expert MINITAB Others

Aerobic 36 6 33 5 4
Anaerobic 5 3 5 1 2
Anoxic 1 – 1 – –
Combined 24 4 21 2 5
Lagoons 3 2 4 – 1
Total % 82.1 17.9 76.2 9.5 14.3
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